Lagring av fisk i kylt saltvatten

av

Arne Liljemark
I serien SIK-Rapport ingår bl.a. försöksrapporter, vilka ofta publiceras innan hela försöks seri en avslutats. De kan senare komma att utvecklas eller sammanföras med andra rapporter till en slutredogörelse, som regel i serien SIK-Publikation.

Undersökning vartill lämnats anslag av Jordbruksforskningsråd.
Lagring av fisk i kylt saltvatten

av

Arne Liljemark

Sammanfattning

Den viktigaste aktuella litteraturen om lagring av fisk i kylt saltvatten refereras.

Fiskens kvalitet bedömdes huvudsakligen genom provsmakning samt bestämningar av flyktiga kväveföreningar, peroxidtal och bakteriental.

Såsom slutomdöme anses tanklagring vid -1⁰ ej kunna bevara fiskens kvalitet så mycket bättre än islagring att metoden av denna anledning skulle vara att föredragna. Till ev. fördelar vid fiskens praktiska hantering har däremot ej tagits ställning.

Med hänsyn till fiskens kvalitet är de främsta fördelarna effek-
tiv värmeöverföring från fisken till det omgivande vattnet och -
det från skandinavisk synpunkt viktigaste - möjlighet att kyla
till något lägre temperatur än med is. Vidare är den mekaniska
påfrestningen på fisken jämförelsevis liten.

Praktiskt kan tanklagring innebära förenklad hantering av
fisken men också svårigheter i samband med utformning och funk-
tion av erforderlig utrustning, inte minst vid tillämpning ombord.

Litteratur.

Även litteraturuppgifter om tanklagringens användbarhet
måste naturligtvis noga bedömas i förhållande till eventuellt
redovisade jämförelsedata och mot bakgrunden av hur fisk normalt
hanteras på platsen ifråga.

Den nämnda kanadensiska sammanfattningen (Roach et al. 1961)
innehåller ett nittiotal referenser och särskilda häviasningar
lämnas här i stort sett endast om de kompletterar dessa.

Före 1950.

I princip är lagring i kylt saltvatten en utvidgning av salt-
lakebehandling av sill och sardiner före hermetisering. När det i
början av 1930-talet klarlagts, hur starkt aktiviteten hos fiskens
enzym och mikroorganismer är beroende av temperaturer, insågs bätt-
re värdet av att hålla saltlösningarna vid låg temperatur. Bland
de äldsta belägen för användning av starkt kylt saltlösning är
annars Le Danois' franska patent från 1920, egentligen en påbygg-
nad av en redan existerande metod med kylning ombord i +2-gradigt
havsvatten. Enligt Le Danois kyldes fisken i havsvatten av −2°,
glacerades med färskvatten och lagrades i kylrum vid −20°till −4°.
Sardiner var efter denna behandling användbara som konservrävar
10 dygn och tonfisk 40 dygn (Le Danois 1952).

Tanklagring under kontrollerade temperaturförhållanden tycks
emellertid ha kommit i bruk först omkring 1940, närmast i Kalifor-
nien. För att kunna ta hand om större mängd av de sardiner, som
landades utan is vid hög lufttemperatur, började konservfabrikan-
ter i samarbete med fiskkonservindustrins laboratorium i San Fran-
sisco att mera metodiskt använda cirkulerande saltlösningar för
snabb nedkylning och för korttidsförvaring (Lang et al. 1946).
Saltlösningarnas temperatur hölls dock över 0°C och först senare gjordes försök med lägre temperaturer (Farber 1955, 1956).

Med anknytning till konservindustrin vid den amerikanska atlantkusten visade ungefär samtidiga försök vid Massachusetts Institute of Technology att sill kunde bevaras som duglig konservrätta under 2-3 dygn vid -3°C i 5 % saltslösning och till två veckor i 15-20 % saltslösning om sillen lades ur före vidare bearbetning (Sigurdsson 1945). Kvalitetskraven tycks dock ha varit ganska måttliga.

I Frankrike ledde liknande försök till rekommendation att förvara sardiner i havsvatten (3,5 % salt) vid -3°C under högst 60-72 timmar och till ett nytt patent för Le Danois 1947 beträffande motsvarande lagring av fisk ombord i korgar, som nedsänkts i tankar med cirkulerande havsvatten (Le Danois 1952).

Från Sovjet beskrev Konokotin (1949) att strömning kunde bevara i rigor under 36 timmar genom att ombord förvaras vid -1 till -2°C i cirkulerande havsvatten, kylt av is, och att den därefter gav en förstklassig rökt produkt. Det bästa resultatet erhålls med 0,05 % tannin i vattnet.

Kanada efter 1950.

Det kanadensiska försöksprogrammet påbörjades 1952 och var från början inriktat på tanklagring i stor skala ombord vid 30°F, d.v.s. -1,1°C. De första försöken gjordes i enkla tankar, omkring 1 m³, men installationerna förbättrades och utförliga rekommendationer lämnas i publikationen från 1961. De känsligaste punkterna är kylningens effektivitet, materialens korrosionsbeständighet och möjligheterna till effektiv rengöring. Därtill kommer inverkan på båtens sjövärld.

Tanklagring har vid Kanadas västkust kommit till användning främst på båtar, som fångar lax eller hälleflundra på lina under längre turer. Utom att arbetet ombord understäts har särskilt hälleflundran bevarats bättre än i is, så att turerna kunnat förlängas. På transportfartyg för lax från fångstplatserna till fabrik kyls laxen snabbt vid tanklagring och hålls upp till en vecka. Så mycket fisk tas som regel om hand, att is ej kan användas på bästa sätt.
I land uppges laxtillförseln bäst kunna utjämnas genom tanklagring vid fabrikerna, där det sällan finns is tillräckligt. Även annan fisk kan komma ifråga för korttidslagring, t.ex. torsk för vidare bearbetning eller skrupsfisk för minkfarmer. Vid träffångst har i liten skala erhållits goda resultat med tunga, långa och soj. För dessa fiskslag är det största problemet viktöktning under längre tidslagring. Detsamma gäller räka, som genom köttats svällning ej kunde handakalas men väl maskinskalas. Sill har tanklagrats över två veckor, huvudsakligen för agn, med nästan oförändrat utseende förutsatt att den ej var full med föda.

Viktöktningen kan elimineras genom tillsats av 2% polyvinylpyrrolidon (används som blodplasmaersättning), vilket emellertid är för dyrt, och frågan är ännu praktiskt olöst. Rensad fisk kan öka 4-8% under två veckor. Salthalten kan öka till 1,5% under samma tid men förmodas stanna strax under 1% om förhållandet fisk till havsvatten i tanken är 3:1 eller 4:1. Utlakning av kvävehaltiga ämnena ur fisken är föga undersökt men tycks ungefär motsvara förhållandet vid islagring.

Beträffande den bakteriologiska nedbrytningen understycks att tanklagringen ej är en ofelbar metod. Vid en del försök har den gett sämre hållbarhet än förvaring i krossad is, troligen berorande på tillräcklig rengöring av utrustningen, föroring genom fiskenarmsmåhåll eller bristande temperaturhållning. Det summaras att tanklagringen normalt ger bättre resultat än medelgod isning. Tillsats av antibiotika har provats med gott resultat vid tanklagring, men effekten därav har i regel varit mindre än av antibiotikabehandling i samband med isning.

I ett tillägg i samma publikation beskriver MacCallum och Chan sjutton försök vid Kanadas ostkust med torsk, som tanklagrats vid 0°C i havsvatten eller vid -1,1°C i havsvatten med till 5% ökad salthalt. Saltillägg gjordes för att undvika frysning; möjligen kan kylslingorna ha varit underdimensionerade. Vid 0°C bevarades torskens sämre genom tanklagring än genom isning, en tängliknande eller härsken lukt uppträdde efter en vecka och saltsmaken blev för stark efter 8-9 dygn (0,9%). Torsk som tanklagrats vid -1,1°C i 5% saltvattnet föredrogs däremot efter 9 dygn framför isad, trots att den nämnda "saltfisk"-bismaken kändes. Författarna summar att tanklagring f.m. ej börde rekommenderas för torsk samt refererar till resultat från Torry och SIK enligt respektive institutioners års-
rapporter.
I ett andra tillägg refererar Lantz försök med färskvattens-
fisk, huvudsakligen vid 0°, men även i saltvatten vid lägre tempe-
ratur. I det senare fallet erhålls endast en betydelselös förbät-
ring jämfört med isning under korttidslagring.

Andra länder efter 1950.

Tanklagring har kommit i praktiskt bruk även på andra håll. Av kanadensare har metoden introducerats på Ceylon, både ombord på uppsamlingsfartyg och i land (Lantz 1955). Av olika skäl före-
kom ej isning av fisk där och kunde ej heller inom rimlig tid tänkas bli införd (Lantz, 1955 b). I australisk fiskhantering har man ej heller sett isning som ett genomförart alternativ utan tagit tanklagring direkt såsom normalt förvaringsätt i land för fisk till vidare bearbetning (Adams 1963).

smak" i saltlakefryst kolja (Peters, J. et al.), det senare i likhet med kanadensiska observationer på torsk (Dyer et al. 1962).

I Europa har det huvudsakligen varit försöksverksamhet. I Frankrike har man efter försök med sardiner vid -1° i havsvatten rekommenderat högst 48 timmar, om sardinerna lagts ned levande (Anon. a.). I övrigt har man där varit mer intresserad av att använda saltvattnet.

Brittiska försök har gjorts med torsk i genomluftade tankar utan annan cirkulation, placerade i kylrum vid 0° (Anon. b.). Skill-
naden mellan tanklagrad torsk och isad var liten. Tanklagring av torsk vid 0° i något större skala ombord utföll något sämre än is-
ning (Eddie 1962). Vid laboratorieförsök fann man inga signifikanta
organoleptiska skillnader mellan sillprover, som efter 2 dygn i is
förvarats ytterligare upp till 4 dygn i is eller i luft vid 0° eller
i kylt saltvatten vid 0°(Anon. b.). Intresset för tanklagring har
därutöver varit litet.

Den ryska försöksverksamheten har fortsatt. Torsk och kungs-

fisk har snabbkylts i tankar med cirkulerande havsvatten av -3°C

och därefter lagrats i kylrum ombord vid -1 till -2°C, varvid fis-

ken bevarats bättre än samtidigt islagrad (Konokotin et al. 1955;

Konokotin 1959). Fisk som kyldes i saltlösning vid -12°C frös på

ytan och höll sig ej bättre än den isade. Nordsjösill (juli) har

lagrats i cirkulerande havsvatten vid -1,2 till -1,6°C i ett tank-

lagringsystem ombord, vilket omfattade två 6 m³-tankar med iskyl-

ning av vattnet, luftavskiljare, filter och förbipplingsbar UV-

lampa. Sillen förvarades under fem dygn med vattenbyte efter två

och fyra dygn. Högst två dygnus tanklagring kunde tolereras före

vidare bearbetning i form av röknings och frysning och det rekomm-

derades att begransa tanklagringen till ett dygn (Gakitschko et

al. 1962). Ett arrangemang som tycks användas i praktiken är trans-

port av sill under 1 1/2 dygn från fiskeplats till hamn i ombygg-

da pramar med cirkulerande havsvatten med tillsats av is och salt

(Chwatkow 1959).

Förråd

Planering.

Försökens vid SIK planerades i samråd med subkommittén för fisk

inom den till Jordbruks Forskningsråd under dessa år knutna lag-

ningsforskningssammets. Utom att ett förberedande försök utfördes

med makrill 1953, övervägde först intressest för torsk och kolja

med hänsyn till både korttidslagring före frysning och förvaring

under längre tid för direkt konsumtion eller vidare bearbetning,

t.ex. fiskbullstillverkning. Några av subkommitténs medlemmar hade

för övrigt med lovande resultat redan prövat tanklagring i liten

skala. Senare togs den feta fisken åter upp och frågan gällde då

att söka bevira sill såsom industriövare under längre tid än som

var möjligt med isning, alltså längre än en vecka.

Utrustning.

En vid SIK fast installerad 1000 l. cylindrisk behållare med

inbyggda kylslingor i direkt förbindelse med kylkompessor be-
gagnades till ett par inledande försök på så sätt, att behållaren

delvis fylldes med vatten och alkohol, varefter femtioliters
aluminiumflaskor med fisk och saltvatten nedsattes i detta kylbad. För att försök skulle kunna utföras samtidigt vid olika temperaturer eller i olika cirkulerande lösningar byggdes en enhet bestående av fyra mindre behållare med separat cirkulation. Den stora behållaren och dess kylkompressor tjänstgör såsom löverantör av kylvätska till slingor runt var och en av de fyra mindre behållarna. Dessa utgöres av 100 liters plåtfat, som plastbehandlats på insidan. Kylslingorna består av i spiral pålödda kopparrör. Kylvätska pumpas av en gemensam pump från den stora behållaren till kylslingorna genom magnetventiler, som via reläer styrs av kontakttermometrar nedsänkta i de mindre behållarna. Saltvatten i dessa cirkuleras av separata pumpar med gummi-impellers genom plastledning och plastfilter från uttag i botten och i retur upptill genom plastslang, som nedsänks under ytan för att minska skumning och på ett sådant sätt att vattnet kommer i rotation. Med metallkrnar, som för silvrats invändigt, kan vattnet avtappas eller nytt vatten påfyllas. Temperaturen kan separat hållas \(0,1^\circ\).

Fig. 1. Principskiss över fast tankutrustning vid SIK.
Fig. 1 visar en principskiss av anordningen. Cirkulationsriktningen kunde med hänsyn till kylningen lika gärna vara omvänd. Båda riktningarna förekommer i olika modeller av de kana-
doniska tankarna. För att minska tendensen till luftinsugning på pumpens sugu
ida föredrogs den valda cirkulationsriktningen.
Då plastbehandlingen i längden ej effektivt skyddade plåtbehål
arna och eftersom det i fisken ibland kunde kännas en såpaktig
lukt, vilken antogs komma från den använda plasten (enligt till
verkar ombord på Statens undersökningsfartyg "Skagerak"
behövdes en transportabel utrustning med större volym. Därtill an
vändes två 300-liters cylindriska plastkärl som isolerats och
klädda med aluminiumplåt. Genom utlopp vid botten pumpas salt
vattnet från plastkärllet genom isolerad plasläng till en värme
växlar, som består av kylslinger nedsänkta i en sluten aluminium
behållare (50 l. mjölklaska). En sådan för varje plastkärl är
gemensamt isolerade i en låda. Kylslingerorna är anslutna till en trans
portabel kyklompressor via magnetventiler, som styrs av kontakt
termometer. Värmeväxlen utfördes först såsom en behållare med
20 % saltlösning i vilken både expansionsling r från kompressorn
och slinger med havsvatten från lagringstankarna var nedsänkta men
denna kunde inom givna gränser ej dimensioneras så att tillräcklig
effekt erhålls.

Försök med torsk och kolja.

Inalles 10 försöksserier har utförts med renad torsk och
kolja under olika förhållanden. De beskrives i all korthet var
för sig i tidssföljd och illustreras även med diagram under respek
tive försöksnumrer i bilaga 2. Resultaten från de försök, som för
löpt i stort sett invändningsfritt (försöken nr 5, 7, 8, 9 och 10),
återses dockutom i sammanfattande diagram (Fig. 2), vilka visar me
delvärden av provsmakargruppers bedömning av lukt och smak enligt

tiogradig skala (lista med exempel på poängvärdenas innebör bifogas
såsom bilaga 1), medelvärden av trimethylaminbestämningar (enligt
Dyer 1945) och medelvärden av
- 9 -

bakterietalsbestämningar (10 cm² utskars från bestämt ställe av ytan på av-
torkad fisk, plattspridningar i kött-pepton-agar beredd på havsvatten). En-
ligt dessa bedömnings var tanklagering vid -1°C något överlägsen islagring, i
förening med tillsats av klortetracyklin tydligt överlägsen, men skillnaden
var mycket blygsam under de första 7 – 10 dygnens lagring. Antibiotika får
ju f.n. ej heller sättas till livsmedel i Sverige. Värdet av hållbarhetsför-
bättringen motverkades betydligt av den ökande salthalten (bestämd enligt
Volhards metod), vilken steg till omkring 1% på 10 dygn och fortsatte att
stiga med samma hastighet. Samtidigt minskade torrsubstranshalten, i regel
omkring 1%, tydande på att vätska absorberades av fisken.

Försök 1.

Förberedande försök utfördes 1955 av Bystedt med från fiskhamnen in-
köpt kolja, som förvarades i stillastående havsvatten vid -1,7°C. Tanklaga-
ringen utföll knappast bättre än lagring i is eftersom skillnaden visade
sig först när båda leden underkänns efter omkring en vecka.

Fig. 2. Sammanfattning av resultat från tanklagringsförsök med torsk
(försök nr 5, 7, 8, 9 och 10).
Försök 2.

I mars 1957 jämfördes med dygnsgammal torsk av storlek 2 (40-60 cm) mellan lagring i vanlig is och i saltis (2,6 % salt) vid lufttemperaturen omkring +4° samt tanklagring i havsvatten (1,9 % salt) och i saltvatten (2,6 % salt) vid vattentemperatur omkring -1°. Tanklagringen ägde rum i 50 l. aluminiumflaskor, nedsänkta i kylbad. Temperaturen mättes med spetsgalvanometer, kopplad till termolement, som instuckits i fisken. Med reservation för att både temperaturerna i islagerrummet och i kylbadet vid ett tillfälle råkade bli för låga av olika orsaker, passerades mitten av lukt- och smakskalan efter 9 dygn av torsk från lagring i vanlig is och efter omkring 13 dygn av torsk från de andra leden. Iskristaller hade då bildats i den tanklagrade torsken, på grund av lägre temperatur mot slutet av lagringstiden.

Försök 3.

Med torsk utfördes i mars-april 1957 ytterligare ett försök med samma jämförelser som vid försök 2 men med 2 % salt i både saltvattenis och saltlösning i tank, motsvarande havsvattens salthalt. Tanklagringstemperaturen var i lägsta laget, -1,70, och iskristaller bildades i fisken. Torsk i vanlig is nådde smakskalan mitt efter 9 dygn, de övriga efter omkring 15 dygn, varvid de tanklagrade var bättre än saltislagrade. Några torskar, som förvarats i saltvatten med 5 mg klortetracyklin per liter vid samma temperatur som de övriga tanklagrade, visade lägre trimetylaminvärden och bakterietal än dessa men provsmakades ej.

Försök 4.

I mars startades det första försöket med cirkulerande vatten. Jämfört med islagring avsågs att prova tanklagring i 2 % saltlösning vid 0°, -0,5°, -1° och 1,5°. De verkliga temperaturenerna blev emellertid 0,1 - 0,3° lägre. På grund av dålig fisktillgång gjordes försöket med torsk som logat isad 4 dygn. Provsamlingarna visade inga säkra skillnader, medan trimetylaminvärden och i viss mån även bakterietal ökade i förhållande till temperaturerna. Obohagliga såplikrande lukter uppträdde.

Försök 5.

I maj lagrades torsk, som fortfarande var i rigor, i is samt i 3 % saltlösning med och utan klortetracyklin (5 mg/l) vid -1,0 och 1,5°. Tillsatsen av klortetracyklin-preparatet (Actonie PD)
förhindrade den skumbildning, som rodan efter några timmar uppstod i de andra tankarna, och fördjupade avsevärt uppkomsten av dålig lukt. Liksom tidigare bildades vid -1,5\textdegree C iskristaller i tankarna och även i fisken. Den islagrade fisken passerade gränser för 5 smakpoäng efter 10 dygn, medan de tanklagrade höll sig 14 dygn eller längre. Skillnaden mellan dem var osäker i smakhänseende men tydlig ifråga om trimethylamin i förhållande till temperatur och antibiotikatillsats. Bakteristalen visade tydlig skillnad huvudsakligen till förmån för antibiotikatillsats i såväl fisk som saltlösning.

Under tanklagringen ökade fiskköttets vattenhållande förmåga allmänt, visat genom utpressning på filtrerpapper (enligt Pohja et al. 1957).

\textbf{Försök 6.}

Vid nästa försök i juni 1958 tanklagrades torsk vid -1,0\textdegree C i 3 \% saltlösning med och utan klortetracyklin (5 mg/l). Lösningarna utbyttes mot nya efter en vecka. I en tank med antibiotikatillsats byttes ej lösning. Försöket startades med torsk i rigor. Efter 5 dygn steg temperaturen till +14\textdegree C på grund av kortslutning i motor till kylmodumpump, efter nedkylning steg temperaturen ett dygn senare på nytt till +2,5 genom fyl på utbytespumpen men hölls sedan vid omkring -1\textdegree C. Genom att felen bedömdes ha drabbat tankarna lika fortsattes försöket. Jämförelse med islagring kunde emellertid ej bli rättvis.

\textbf{Försök 7.}

Upprepning såsom serie 6 förlöpte utan missöden i okt.-nov. 1958. Isad torsk passerade 5 poäng-nivån efter 6 - 9 dygn, tanklagrad med byte av saltlösning efter 13 dygn (såväl med som utan klortetracyklin, vilka försöksled emellertid senare skildes åt) samt tanklagrad utan byte och med klortetracyklin efter 16 dygn. Effekten av vattenbytet i försöksleden med antibiotikum märktes för övrigt i trimethylaminvärdena men ej i bakteristalen. Tanklagring gav högre smakpoäng än islagring redan vid bedömningen efter en vecka. Såsom ett tillfälligt test provades att minska antalet levande bakterier i använd saltlösning genom bestrålning med ultraviolett ljus i en genomströmningsapparat (Hanovia, Model 6) som kopplades direkt till cirkulationen i tanken utan antibio-
tikum. Från 205 000 bakterier/ml. reducerades antalet till 40 000 på en halvtimme och till 450 på 4 timmar. Pumpningshastigheten var drygt 5 l/min. och tanken innehöll 80 l saltlösning. Hela volymen passerade alltså lampan ungefär fyra gånger på en timme.

Försök 8.

I oktober 1959 utfördes det första försöket med de transportable tankarna ombord på "Skagerak", varvid torsk tanklagrades med och utan klortetracyklin (5 mg/l) ända från fångsttillfället. Svårigheter att hålla temperaturen under -0,5 °C var trolig orsak till att tanklagringen ej utfyllt bättre än isning annat än ifråga om en svag skillnad till förmån för antibiotikatillsats.

Försök 9.

I juli 1960 utfördes ytterligare ett försök med byte av saltlösningar efter 8 - 9 dygn i de stationära tankarna vid -1 °C med och utan antibiotikum. Tanklagring var därvid ej nämnvärt fördelaktigare än isning men antibiotikumeffekten var ändå tydlig ifråga om bakterietalen och även ifråga om den totala mängden flyktiga kvävebaser (TVB). Den senare bestämdes med Conway-metodik vid detta och närmast följande försök.

Försök 10.

Ett nytt försök ombord på "Skagerak" utfördes i oktober 1960 varvid torsk och kolja hölls vid 0 °C under 3 dygn ombord och sedan överflyttades till andra tankar i land, hållna vid samma temperatur. Den tanklagrade torsken bedömdes intill 11 dygn vara något bättre än samtidigt isad torsk men därefter likvärdig med denna. Liksom förut ansågs salthalten snart bli för hög. I pumpsystemet till den ena tanken, till vilken satts klortetracyklin (10 mg/l), uppstod en läcka som medförde att temperaturen under de första tre dygnen låg ungefär 1 °C högre än i tanken utan tillsats. Först efter 1 1/2 - 2 veckor bedömdes fiskkvaliten i denna tank vara bättre i behållna än i tanken utan antibiotikum. Torsk och kolja försämrades med ungefär samma hastighet.

Försök med sill.

Vid det förut nämnda förberedande försöket med makrill 1953 lagrades denna vid -3 °C i stillastående 7 % saltlösning med mindre
gott resultat beträffande peroxidbildning och smak (försök 11).

Under perioden oktober 1961 - mars 1962 utfördes fem försöks-
serier med orensad sill av storleksklasserna 1, 2 och 3 (antal sillar
per kg högst 10, 18 och 24 resp.), varvid liksom för torskfiskens prö-
vades tanklagring i cirkulerande 3 % saltlösning med och utan antibio-
tikum.

Beträffande trimetylaminvärdena var effekten god, men fettoxida-
tionen hämmades ej utan påskynadades i stället genom saltinsträngningen,
både vid ca 20 % fetthalt och ca 5 % fetthalt (försök 12 och 13).

Vid sänkning av temperaturen till -3° och till -5°, varvid salt-
halterna i lösningarna i motsvarande grad måste ökas, erhölls visser-
ligen en hämmning av peroxidbildningen vid -5° men denna var helt utan
praktisk betydelse (försök 14).

Försök vid -3° upprepades, samtidigt som det vid -1° prövades
att minska saltinsträngningen i sullen med hjälp av alginat-tillsats
(Protanol H) samt att utbyta salt mot glycerin.
Alginattillsatsen förbättrade tillståndet men ej upp till islagringens
nivå. Med glycerin erhölls vid -1° lägre peroxidtal än vid islagring,
men 9 % glycerin gav en obehaglig söt smak åt sullen (försök 15).

Vid försök med mindre mängd glycerin (6 %) och lägre temperatur
(-2°) motsvarade peroxidbildningen den vid islagring men smakbedöm-
ningen utföll fortfarande ofördelaktigt. Tanklagring i havsvatten vid
-1° förbättrades ej av tillsats av alginat ensamt eller av alginat
tillsammans med citronsyra och askorsyra (försök 16). Vid detta
försök bedömdes fettoxidationen även genom ett enkelt tiobarbitur-
syratext (TBA).

Denna negativa urforrornhet erhölls också efter 3 - 4 dygn lagring.
Ej i något fall kunde tanklagring av sill mäta sig med väl utförd is-
lagring.

Slutsatser.

Försöken vid SIK visade att tanklagring vid omkring -1° kan, om
allt fungerar riktigt, bevara orensad torsk något bättre mot förstöring
änt innan, men att saltinsträngningen är en nackdel som påverkar smak-
ken direkt och möjlichen också indirekt genom saltets inverkan på fett-
ämnen. Det senare var än tydligare vid tanklagringsförsöken med sill,
i vilken fettoxidationen ökades av saltet även vid temperaturer under
-1°, varför den isade sullen genomgående bedömdes vara bättre.
Så länge grundkravet för vår del, d.v.s. väsentligt bättre bevarad fiskkvalitet, ej är uppfyllt, har en detaljgranskning av tanklageringens inverkan på fisken ej så stort intresse. I tab. 1 har de viktigaste för- och nackdelarna i jämförelse med isning uppställts.

Frågan huruvida tanklagering är en lämplig metod eller ej bör besvaras huvudsakligen med hänsyn till praktisk hantering av fisken. Kvalitativt torde tanklagering knappast kunna konkurrera med isning av fisk i lådor på skandinaviskt sätt.

Tab. 1. Väsentlig inverkan på fiskkvaliteten av tanklagering vid omkring -1°C.

<table>
<thead>
<tr>
<th>Fördelar</th>
<th>Nackdelar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ev. bättre bevarad lukt och smak.</td>
<td>Saltsmak.</td>
</tr>
<tr>
<td>Saltinträngning ökar fiskmuskelnas vattenhållande förmåga.</td>
<td>Ev. härskensmak genom saltinverkan på fett.</td>
</tr>
<tr>
<td>Långsammare bildning av flyktiga kvävebasor.</td>
<td>Salt "denaturerar" äggviteämnen.</td>
</tr>
<tr>
<td>Ev. långsammare ökning av bakteriel.</td>
<td>Vid för låg temperatur hydrolys av fosfolipider, vilket bidrar till smakförsämring; ökas under ev. fryslagring efteråt.</td>
</tr>
<tr>
<td>Fiskelem m.m. spoljas av.</td>
<td>Ev. oförändrad ändring av mikroflorans sammansättning.</td>
</tr>
<tr>
<td>Inga tryckskador på fisken.</td>
<td>Mikroorganismer även i vattnet.</td>
</tr>
<tr>
<td></td>
<td>Fisken tar upp vatten.</td>
</tr>
</tbody>
</table>

I detta arbete har deltagit bl.a.

Inger Erichsen, M.Sc.
Ingenjör Henrik W. As
" Kjell-Åke Olsson
" Margareta Bjernstad
Fru Sonja Grivans
Nygva Umgård
Vermästare Carl-Åke Sandmark
SIK:s verkstad och provkök
samt Statens undersökningsfartyg Skagerak.

(bakteriotalsbestämningar)
(bakteriotalsbestämningar)
(kemiska analyser m.m.)
(kemiska analyser m.m.)
(tankutrustning)
(tankutrustning)
Referenser.

4. Chwatkow, E.G. "Onbyggd av 100-tonspråmar för fisktransport i kylta, cirklurande saltlösningar". Rybnoye Chozinistwo 35 (1959) 10 p. 22. (Ryska)

16. Lang, O.W., Farber, "The temporary holding of sardines by refrigerated L.A. and Yerman, F. brine." Lab. for Res. in the Fish Canning Ind., Univ., San Francisco 1946. (Stencil)

Bilaga 1. Poängskalor för kvalitetsbedömning.

Handledning vid bedömning av lukt och smak hos kokt torskfisk efter 10-gradig skala.

<table>
<thead>
<tr>
<th>Lukt</th>
<th>Smak</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Stark, frisk lukt av hav och tång.</td>
<td>10 Frisk havssmak, typisk för fisksorten.</td>
</tr>
<tr>
<td>9 Svagare frisk lukt av hav och tång.</td>
<td>9 Tydligt försvagad havssmak.</td>
</tr>
<tr>
<td>8 Förlust av lukt av hav och tång. Ingen bilukt.</td>
<td>8 Förlust av den för fisksorten typiska smaken. "Hummerliknande" smak.</td>
</tr>
<tr>
<td>7 Något förstärkt, men ingen sur eller skämd lukt. Lukt av hyvelspån, sågspån, svag kyllagerlukt. Svag saltfisklukt.</td>
<td>7 Något förstärkt "fisksmak." Ingen bismak.</td>
</tr>
<tr>
<td>6 Svagt söttaktig, svag lukt av kokt tvätt, kondenserad mjölk.</td>
<td>6"Fisksmak" något unken,</td>
</tr>
<tr>
<td>5 Luktar mjölkkärl, kokt potatis, kokt tvätt, metallisk lukt.</td>
<td>5 Jolmig bismak, något syrlig, unken, ej bitter.</td>
</tr>
<tr>
<td>4 Sur mjölk, mjölksyra, stark fisklukt.</td>
<td>4 Tydlig bismak, syrlig, något bitter.</td>
</tr>
<tr>
<td>3 Lägre fettsyror, såpig, talgig, fettkålrotsliknande.</td>
<td>3 Bitter, talgig, lägre fettsyror.</td>
</tr>
<tr>
<td>2 Ammoniakalisk, TMA m.m.</td>
<td>2 Tydlig bitter, talgig, svag TMA.</td>
</tr>
<tr>
<td>1 Ammoniak, TMA, sulfider.</td>
<td>1 Starkt bitter, ammoniakalisk, TMA.</td>
</tr>
<tr>
<td>0 Stark ammoniak, TMA, sulfider.</td>
<td>0 Ammoniak, sulfider.</td>
</tr>
</tbody>
</table>

Handledning vid bedömning av kokt sill (i första hand det mörka köttet).

10 Frisk, god lukt av sill.
9 Svag, frisk lukt av sill.
8 Ren lukt, ingen bilukt.
7 Svagt oljig, svagt syrlig, svagt från, svagt unken.
6 Oljig, tranig, svag lukt av kokt potatis, syrlig, något från, svag lukt av kokt tvätt.
5 Svagt härsken, från lukt av kokt tvätt, våt katt, från lukt, tydligt syrlig.
4 Tydligt härsken, från, stark lukt av våt katt, mycket syrlig.
3 Härsken, mycket från, stark lukt av våt katt, mycket syrlig.
2 Mycket härsken, ev. TMA eller ammoniak.
1 Mycket starkt härsken, ev. TMA eller ammoniak.

10 Frisk, god smak av sill, ev. fet men ingen bismak.
9 Svag, frisk smak av sill, ev. fet, men ingen bismak.
8 Ren smak, ingen bismak.
7 Svagt oljig, svagt syrlig, svagt från.
6 Oljig, tranig, unken, syrlig något från.
5 Svagt härsken, syrlig, unken från, något besk.
4 Tydligt härsken, tydligt från, mycket syrlig, mycket unken, stickande, besk.
3 Härsken, mycket från, besk.
2 Mycket härsken, ev. TMA.
1 Mycket starkt härsken, ev. TMA.

Ren oljig smak kan förekomma i fet sill ända från början.

Göteborg juni 1963
2066/63 Sn
<table>
<thead>
<tr>
<th>Arte bedömning</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pigmentering</td>
<td>regnbågsklarande</td>
<td>skimrande</td>
<td>klar</td>
<td>börjar bli matt</td>
<td>matt</td>
<td>avfärgad</td>
<td>gråaktig</td>
</tr>
<tr>
<td>slem</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>färger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>färg</td>
<td>pupillen glänsande svart</td>
<td>pupillen mattare, hornhinnan genomskinlig</td>
<td>hornhinna, hornhinnan mjölkig</td>
<td>pupillen grå</td>
<td>vitaktig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>form</td>
<td>kupig</td>
<td>nägot insjunk</td>
<td>platt</td>
<td>konkav i mitten</td>
<td>helt konkav</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sålar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>färger</td>
<td>kraftigt, klar</td>
<td>matt</td>
<td>blekrande</td>
<td>gulaktig</td>
<td>gråaktig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lukt</td>
<td>bev, tång</td>
<td>neutral</td>
<td>sättaktig</td>
<td>svagt från (härskan)</td>
<td>sländ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastalet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kropp</td>
<td>före rigor</td>
<td>fast</td>
<td>elastick</td>
<td>medgörlig</td>
<td>mjuk</td>
<td>sladdrig</td>
<td></td>
</tr>
<tr>
<td>bukvägg</td>
<td>-</td>
<td>oförändrad</td>
<td>-</td>
<td>mjuk</td>
<td>slav</td>
<td>perforerad</td>
<td></td>
</tr>
<tr>
<td>Nere bedömning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Färger</td>
<td>oförändrad</td>
<td>vidhäftande</td>
<td>ej vidhäftande</td>
<td>trasig</td>
<td>sörnfallen</td>
<td>upplöst</td>
<td></td>
</tr>
<tr>
<td>intill</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ljusgral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>förhållande</td>
<td>brister i stället för att lösna</td>
<td>vidhäftande</td>
<td>-</td>
<td>skärg</td>
<td>röd</td>
<td>brun</td>
<td></td>
</tr>
<tr>
<td>till köttet</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nedkolning</td>
<td>tång</td>
<td>neutral</td>
<td>svag, ej aldrad</td>
<td>skarp, mjölk</td>
<td>lägre fettsyror</td>
<td>ammoniak</td>
<td></td>
</tr>
<tr>
<td>lukt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Smak</td>
<td>specific</td>
<td>specific, förstärkt</td>
<td>aromen förlo</td>
<td>smaklös</td>
<td>äckligt söttaktig, något bitter</td>
<td>bitter, erin-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>las</td>
<td></td>
<td></td>
<td>rande om SH₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eller NH₃</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kväljande</td>
</tr>
</tbody>
</table>
Bilaga 2. Diagram över resultat från samtliga försök.

1. Källa, inled i maj, 1955
 - o is
 - x havsvatten, -1.7°C, ej cirk.

2. Torkad, lagen i maj, mars 1957.
 - o is
 - x 1 is med 5% salt, lufvtmp 30°C till 40°C
 - a 2 is med 5% salt, ej cirk.
 - d x havsvatten (5% sal), ej cirk.
 - x fisk med klarteracykin (CTC) 5 mg/l.

3. Torkad, 1 dag inled, april 1957.
 - o is
 - x 1 is med 5% salt
 - o 2 is med 5% salt, ej cirk.
 - d x havsvatten (5% sal), ej cirk.
 - □ fisk med klarteracykin (CTC), 5 mg/l.
2. Torsk, i dyra ledd, okt. 1959

- In
- Cirk. vatten med 3% salt, -1,0°C, byte efter 8 d.
- och 0 mg/l CTC, -1,0°C, byte efter 7 d.
- Cirk. vatten med 3% salt och 5 mg/l CTC, -1,0°C, ej byte.

[Luktsnack/Smak]
[TMA mg/100g fisk]
[Dakt. log antal/g]
[Dakt. I vatten log antal/pål]
[Wättebindning, diff. mellan pressyter]
[Salt]
[Ph]
[Torrsubstanter]
- In
- Cirk. havsvatten
- Cirk. havsvatten med 5 mg/l CTC]
2. Torsk, 1 dygn sedan, Juli 1960.
 ○ Is
 x Cirk. vatten med 35 salt, -10°, byte efter 8 dygn.
 △ Cirk. vatten med 35 salt, -10°, 8 mg/l OTG, byte
 efter 8 dygn.

10. Torsk och kolja, startat ombord "Skanska",
 ○ Is
 x Cirk. havsvatten, -10°
 △ Cirk. havsvatten, -10° med 10 mg/l OTG

11. Makrell, 1 dygn sedan, april 1963 (Öystad)
 ○ Is
 x Saltlösning (75), -30°, ej cirk.

% SALT

PERCIDENTAL m.ckw/kg

TMA mg/100g fisk

TVB mg/100g fisk

LUKT, SMAK

TMA TEMP

TVB TEMP
- Is
- Cirk. vatten med 3% salt, -10°C
- Cirk. vatten med 3% salt och 10 mg/l oxitetrazyklin (OTC), -10°C
Utseende och konsistens enl. Soudan's skala.

13. Sill, storlek 2, 1 dygn isad, 5% fett, nov 1961.
- Is
- Cirk. vatten med 3% salt, -10°C
- Cirk. vatten med 3% salt och 10 mg/l OTC

14. Sill, storlek 3, 4 dygn isad, dec, 1961
- Is
- Cirk. vatten med 6% salt, -30°C
- Cirk. vatten med 5% salt, -50°C
13. Sill, storlek 3, 1 dygn isad, 8% fett, febr. 1962.
 ○ ls
 x Cirk. vatten med 3% salt, -10
 △ " " " " och 0,3% alginat, -10
 ▽ " " " 8%, -30
 □ " " " 9% glycerin, -10

LUKT, SMÅK

PEROXIDTAL m. ekv/kg

16. Sill, 1 dygn isad, 7% fett, mars 1962
 ○ ls
 x Cirk. havsvatten, -10
 △ " " med 0,3% alginat, -10
 ▽ " " " " och 0,05% ask-syr, -10
 □ Cirk. havsvatten med 6% glycerin, -20

LUKT, SMÅK

PEROXIDTAL m. ekv/kg

TBA ext.