”Men de är ju kaniner, kan de inte bara gräva nya hål?”

En studie om ur elever använder sin problemlösningsförmåga i matematik, i klassrummet.

Mathilda Ovesson
Abstract

The purpose of this study was to examine how students use their problem solving skills in mathematics and how they communicate during relevant lessons. Their learning material was analyzed based on its content of problem solving. The methods used to collect data were observational, by observing a 1st grade class during five lessons. The observations focused on the lesson as a whole and especially on five different pair of students and how they worked and communicated to solve a problem. The result was that the students reached their solutions by recollecting previous knowledge, through communicating with their classmates and the teacher, by using their reasoning skills to find plausibility in their solutions and to share them with the rest of the group. Even though their learning material lacked in problem solving tasks, the teacher was able to properly guide the students through the problems. By providing enough support the students were then able to form valuable solutions and gain knowledge from the lesson.

Nyckelord:
Problemlösningsförmåga, kommunikationsförmåga, resonemangsförmåga, läromedel.
Innehållsförteckning

1. Inledning ... 5
2. Syfte och frågeställningar ... 6
3. Forskningsbakgrund .. 7
 3.1. Vad innebär problemlösning .. 7
 3.2. Hur styrdokumenten beskriver förmågan .. 7
 3.3. Varför arbeta med problemlösning .. 8
 3.4. Hur forskare och lärare resonerar kring begreppet ... 9
 3.5. Svårigheter med problemlösning ... 9
 3.6. Elevstrategier vid problemlösning .. 10
 3.7. Betydelsen av lärarens roll .. 11
 3.8. Betydelsen av lektionens utformning ... 12
4. Teoretisk utgångspunkt ... 14
 4.1. Fallstudie och grundad teori .. 14
 4.2. Förmågor ... 14
5. Material och metod ... 19
 5.1. Urval ... 19
 5.2. Datainsamlingsmetod ... 19
 5.3. Procedur .. 20
 5.4. Observationerna ... 21
 5.5. Etiska ställningstaganden ... 22
 5.6. Bearbetning ... 22
6. Resultat ... 24
 6.1. Läromedlet ... 24
 6.2. Lektionerna ... 25
 6.2.1. Upplägg ... 25
 6.2.2. Instruktioner ... 29
 6.2.3. Muntligt aktiva ... 29
 6.2.4. Pararbetet .. 30
 6.2.5. Kommunikation ... 31
 6.2.6. Elevernas resonemang utifrån lösningsförslagen ... 32
7. Analys och diskussion .. 34
 7.1. Arbete med problemlösning ... 35
 7.2. Kommunikation .. 39
7.3. Metodiskussion ..43

8. Slutreflektioner och didaktiska implikationer ...45

9. Litteraturlista ...46

Bilaga 1, frågeställningar till observationstillfällen ...49
Bilaga 2, problemlösningsuppgift från observationstillfälle nr 150
Bilaga 3, problemlösningsuppgift från observationstillfälle nr 251
Bilaga 4, problemlösningsuppgift från observationstillfälle nr 352
Bilaga 5, problemlösningsuppgift från observationstillfälle nr 453
Bilaga 6, problemlösningsuppgift från observationstillfälle nr 554
1. Inledning

Vidare uppmärksammade jag att under lektionerna på min praktik som handlade om problemlösning så kommunicerade, resonerade och förmedlade eleverna sina matematiska kunskaper på olika sätt. Exempelvis räckte vissa gärna upp handen och kunde berätta hur de tänkte, medan andra tyst räknade för sig själva eller gjorde precis som sin räkne-kompis gjorde. Detta gjorde mig nyfiken på hur elever utvecklar och arbetar med samma slags förmåga. Dessa observationer och funderingar ledde till att jag bestämde mig för att skriva mitt examensarbete inom detta område. I min studie vill jag undersöka hur eleven arbetar med problemlösning för att öka min förståelse och kunskap om hur problemlösningsförmågan kan utvecklas. Detta görs för att främja min egna profession och stödja mig i min framtida roll som lärare.
2. Syfte och frågeställningar

Syftet med arbetet är att undersöka hur elever i ett klassrum arbetar och utvecklar sin problemlösningsförmåga samt att undersöka hur kommunikationen sker under lektioner med problemlösning. Även elevernas läromedel inom matematik analyseras utifrån innehåll av problemlösningsområdet.

De frågeställningar som utformat undersökningen är:

1: Hur arbetar eleverna med problemlösning i klassrummet?
2: Hur kommunicerar eleverna under problemlösningslektionerna?
3: Hur behandlar elevernas läromedel matematiska problem?
3. Forskningsbakgrund

3.1. Vad innebär problemlösning

National Council of Teachers for Mathematics, NCTM, definierar problemlösning som en aktivitet där man i förväg inte vet lösningstekniken till det problem som man har fått (2000). För att lösa problemet måste eleverna använda sig av sina tidigare kunskaper och erfarenheter, samt att de genom detta utvecklar nya matematiska förståelser under processens gång. "Solving problems is not only a goal of learning mathematics but also a major means of doing so.” (s. 4).

3.2. Hur styrdokumenten beskriver förmågan

Problemlösning är inte bara ett arbetssätt inom matematiken, utan finns i styrdokumenten både som ett kunskapskrav och som en av de matematiska förmågorna som eleverna ska främjas att utveckla. I ett historiskt perspektiv kan man se att problemlösning i kursplanerna har övergått ifrån att anses som något som man räknar, till något som man lär genom (Hagland, Hedrén & Taflin, 2005). I kursplanen för matematik står det att den matematiska verksamheten är ”…till sin art en kreativ, reflekterande och problemlösende aktivitet som är nära kopplad till den samhälleliga, sociala och tekniska utvecklingen” (Lgr11, s. 62).

Skolverket (2011) definierar problemlösningsförmågan som en förmåga där eleverna:

- ”utvecklar kunskaper för att kunna formulera och lösa problem samt reflektera över och värdera valda strategier, metoder, modeller och resultat.” (s. 62).
- ska lära sig ”strategier för matematisk problemlösning i enkla situationer”
- och där eleverna möter en ”matematisk formulering av frågeställningar utifrån enkla vardagliga situationer” (s. 64).

Men läroplanen beskriver inte hur läraren konkret och detaljerat ska bedriva sin undervisning eller hur läraren ska gå tillväga för att främja elevernas utveckling av de
matematiska förmågorna. I läroplanen står det att "[s]kollagen föreskriver att utbildningen inom varje skolform och inom fritidshemmet ska vara likvärdig, oavsett var i landet den anordnas." och att undervisningen "ska bedrivas i demokratiska arbetsformer och förbereda eleverna för att aktivt delta i samhällets liv." (Skolverket, 2011, s.8). Detta kan då tolkas som att undervisningen syftar till att vara likvärdig över alla skolor, men att det är upp till varje lärare att se till att detta ska ske. Lärarens uppgift blir då att utforma en undervisning som utvecklar förmågorna utan att det finns en tydlig beskrivning i styrdokumenten om hur denna undervisning ska gå till.

3.3. Varför arbeta med problemlösning

Vidare menar Taflin att genom att arbeta med problemlösning i klassrummet kan eleverna också öva på sitt matematiska resonemang. I kursplanen för matematik står det att eleverna ska kunna "föra och följa matematiska resonemang" (Lgr11, s. 63) och det är då enligt Taflin något som kan hjälpa eleverna i sin utveckling inom det matematiska lärandet. Hagland m.fl. (2005) beskriver elevernas kunskapsutveckling under problemlösningslektioner som något som sker då eleverna själva upptäcker att det finns ett område som deras kunskaper behövs tillämpas på. De får då möjlighet att anpassa och ta användning av det de redan kan för att försöka lösa problemet. Till sist kan nya insikter om matematik nås då eleverna får samtala tillsammans med varandra och med läraren om lösningarna, och enligt Hagland m.fl. kan kunskaperna befästas djupare om eleverna ges möjlighet till diskussion.

Schoenfeld (1992) beskriver hur elevernas metakognition, det självreglerande lärandet, kan fungera i arbetet med problemlösning. Under processens gång, om arbetet flödar på och eleven inte uppfattar några svårigheter eller hinder kommer han eller hon att fortsätta på samma sätt. Men om eleven kommer av sig, eller upplever att den inte längre förstår eller klarar av det med den metoden den använder, kan eleven göra annorlunda och det är då eleven reglerar sitt eget lärande. Eleven uppvisar i detta fall en metakognitiv förmåga eftersom han eller hon uppmärksammar att den kunskap eller metod som användes inte var verksam. Detta kan också praktiskt visa sig genom att eleven kanske läser om uppgiften, går tillbaka, kontrollerar att den hade förstått vad som frågats efter, eller försöker med en annan metod för att komma fram till en lösning till
plansomet. Att arbeta med problemlösning är alltså något som kan utveckla elevernas metakognitiva förmåga.

3.4. Hur forskare och lärare resonerar kring begreppet

Hagland m.fl. (2005) menar att begreppet problemlösning har ansetts som en betydelsefull del av matematikundervisningen i de tidigare styrdokumenten och att det kommer fortsätta i de efterkommande kursplanerna. Detta kan vi tydligt se, både i det som tagits upp tidigare i forskningsöversikten, samt genom att understryka att problemlösning både finns som centralt innehåll i kursplanen för matematik och att det beskrivs som en av de matematiska förmågorna eleverna har som mål att utveckla.

3.5. Svårigheter med problemlösning

Det finns upptäckningar om att det är mer tidskrävande och framförallt svårare för lärare och pedagoger att utföra lektioner som är av problemlösningskaraktär (Skott, 2010; Taflin, 2007). Detta för att uppgifter som är av mer bestämd karaktär kräver generellt enklare undervisning där elever kan följa med i resonemang och använda angivna verktyg och metoder för att lösa uppgifterna. Men i problemlösning, där kravet är att problemet och lösningen ska vara okänd och ny, krävs det en annan slags planering hos läraren. Hagland m.fl. (2005) förespråkar en användning av problemlösning i klassrummet bland annat eftersom det skapar omväxling under matematiklektionerna där eleverna får möjlighet att arbeta med uppgifter på ett mer varierat sätt. Men planeringen av dessa lektioner kan vara mer utmanande då problemet som läraren väljer
måste passa gruppen och den nivå de ligger på. Vidare måste läraren planera hur problemet ska introduceras för eleverna, hur de ska arbeta för att komma fram till sina lösningar, vilka nya spår som kan dyka upp vid problemlösningen och sist men inte minst hur läraren ska knyta ihop säcken. Det avslutande momentet av problemlösningslektionerna bör leda till att nya kunskaper nås och att eleverna får möjlighet att diskutera om hur de har tänkt när de kom fram till sina lösningar (Hagland m.fl.). Om lektionerna och undervisningen i problemlösning hanteras på rätt sätt, anser författarna att detta kan leda till en undervisning av ”variation och arbetsglädje” (s. 7, 2005). Samtidigt påpekar Lester (1988) att eftersom problemlösning är en sådan komplex metod i undervisningen krävs det att läraren kan ge eleverna instruktioner av både kvalité och kvantitet. Det behövs rätt mängd information, samt att denna information är tillräckligt givande för att eleven ska kunna ta sig an problemet.

3.6. Elevs strategier vid problemlösning

- att välja en eller flera operationer att arbeta med
- att rita en bild
- göra en lista
- skriva upp en ekvation
- dramatisera situationen

10
• gör en tabell eller ett diagram
• gissa och pröva
• arbeta baklänges
• lösa ett enklare problem
• använd laborativa material eller modeller

Lester anser att om en elev upplever svårigheter med problemlösning, kan detta bero på att han eller hon inte har fått tillräckligt många strategier att använda för området. Han menar att de flesta elever bara lär sig den första strategin i listan och att eleverna bör utrustas med fler och direkt undervisas om vilka problemlösningsstrategier de kan använda i sin undervisning. Men Hagland m.fl. (2005) anser inte att läraren ska undervisa om vilka strategier de ska använda. Detta betyder inte att läraren ska undvika att undervisa om olika metoder och tillvägagångssätt – man kommer under lektionerna med problemlösning att naturligt stöta på olika strategier eftersom eleverna är olika och kommer att angripa problemen på olika sätt. Hagland poängterar att det är vid sådana tillfällen läraren bör visa på olika perspektiv, men strategierna är inget som läraren ska ”ge ut” som hjälpmedel till eleverna.

3.7. Betydelsen av lärarens roll

Taflin anser också att det är nödvändigt att den som löser uppgiften känner lust och möjlighet till att lösa uppgiften. Lester (1996) påpekar att för att läraren ska kunna främja rika lektioner med problemlösning och kunna utveckla elever med förmåga att ta sig an sådana uppgifter, krävs följande:
1: Att eleverna får möjlighet att lösa många problemlösningsuppgifter och på så vis utveckla förmågan
2: Läraren måste vara medveten om att förmågan tar lång tid att utveckla
3: Läraren måste kunna förmedla en känsla av betydelse för problemlösning, att det är viktigt och att det finns en anledning till varför eleverna jobbar med problemlösning.

3.8. Betydelsen av lektionens utformning

Under fördjupningsarbetet använde sig läraren av de aspekter som författarna nämnt – hur lektionen är uppbyggd, hur mycket tid som ägnas åt genomgång, diskussion och redovisning av lösningsförslagen, samt den kommunikation som sker som stöd i utformandet av lektionerna.

Läraren kunde i slutet av fördjupningsarbetet se att de problemlösningsuppgifter som valts att arbeta med möjliggjorde individualisering och att alla elever kunde finna en utmaning i det de gjorde. Då alla löste samma uppgift men kom fram till olika lösningsförslag kunde eleverna ta del av varandra lösningar och tankar, både under lektionen och i slutet under redovisningarna. Under lektionen skapades också många tillfällen för eleverna att resonera om uppgiften, både i sina mindre grupper och tillsammans i helklass.

Slutsatserna som läraren drog var att redovisningsfasen hade en stor betydelse för att problemlösningslektionen skulle vara lärorik för eleverna. Det var inte möjligt för läraren att alltid ha givande avslut av lektionerna på grund av svårigheter att beräkna tiden och att bibehålla elevernas fokus under varje redovisning. Men läraren säkerställde att varje grupp fick redovisa och delge sina lösningar för henne. Vissa
4. Teoretiska utgångspunkter

I denna del tas de teorier upp som kommer att fungera som utgångspunkt vid analysen. Utifrån frågeställningarna "Hur arbetar eleverna med problemlösning i klassrummet?" och "Hur kommunicerar eleverna under problemlösningslektionerna?" har följande teoretiska utgångspunkter valts.

4.1. Fallstudie och grundad teori

4.2. Förmågorna
I kursplanen för matematik finns det bland annat tre förmågor som eleverna ämnar att utveckla (Lgr11). Det är upp till läraren att skapa förutsättningar i lärandemiljön för att främja utvecklingen av dessa förmågor och det står beskrevit i ämnets syfte att eleverna ska kunna:

- "formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
- föra och följa matematiska resonemang, och
- använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser." (Skolverket, s.63).

Kommunikation

En utvecklad kommunikationsförmåga inom matematik är något som enligt Häggbom (2013) kan leda till att eleverna utvecklar sina kunskaper i att argumentera och reflektera över sina lösningar. Detta eftersom att kommunikation handlar om en aktiv språkanvändning som eleverna tränar på och använder kontinuerligt i klassrummet. Häggbom menar att språket fungerar som brobyggare mellan matematikämnet och den utveckling som sker hos eleven, genom att man i klassrummet aktivt samtalar om det man undervisar om och arbetar med. Den miljö som lärandet sker i ska präglas av en språkanvändning och en social interaktion - inte bara mellan eleverna - utan också mellan lärare och elev. Det är lärarens uppgift att se till att den miljö som eleverna befinner sig i och att den kommunikation som sker skapar möjligheter och tillfällen för eleverna att få berätta hur de tänker. Häggbom påpekar att läraren inte bara ska vara beredd att lyssna och uppmärksamma elevernas resonemang och argumentationer, utan också att läraren bör kunna ”utvärdera kvaliteter” (s. 43) och se mönstre och samband i deras tankar.

Exempel på när eleverna använder sin kommunikativa förmåga under lektioner som handlar om problemlösning är när de skriver ner och läser upp sina lösningar, förklarar vad de kommit fram till och när de kan redovisa sina lösningar med bild och text. När eleverna förmedlar sin lösning till varandra och till läraren, samt när de kan förstå
lärarens förklarningar och den text som finns i uppgiften, arbetar de kommunikativt med det matematiska språket. För att eleverna ska förstå det matematiska språket som används i undervisningen förutsätter man att eleverna har ett gott matematiskt ordförråd till hjälp (2013).

Häggblom menar vidare att när eleverna arbetar kommunikativt i klassrummet lär de sig också att diskutera och använda sin resonemangsförmåga genom att de muntligt behöver förmedla sina tankar. När eleverna får möjlighet att lyssna både på sina egna resonemang och sina klasskamraters kan de utveckla sina ämneskunskaper eftersom de då lär av varandra. Språkanvändningen i klassrummet gör det möjligt för elevernas tankar att bli ”synliga för dem och för läraren” (s. 44) och det skapar tillfällen för läraren att förstå elevens tankegångar och stödja eleven till att nå nya insikter, samt att läraren kan använda dessa nya spår och anpassa undervisningen utefter det.

Resonemang

Problemlösning

Häggblohm (2013) beskriver problemlösning som en förmåga som ger möjligheter att lösa problem i fler ämnen än bara matematik. En utvecklad problemlösningsförmåga innebär en förmåga att kunna tolka information och situationer för att i ett nästa steg kunna formulera rimliga svar eller lösningar med matematiska uttryck och former. Som tidigare nämnts i bakgrunden är det av stor betydelse för utvecklingen av förmågan att eleverna känner både betydelse och möjlighet i lösningen av problemen. Där har läraren en viktig roll i skapandet av problemen, som inte får vara för lätt eller för svåra för eleverna att klara av, samt att eleverna ges tillräckligt med tid och stötning. Det är också viktigt att eleverna ges möjlighet att diskutera och samtala om sina och andras lösningar för att kunna koppla samman nya kunskaper med de tidigare erfarenheterna inom området – och det är där förmågorna resonemang och kommunikation kommer in. Alla tre förmågorna hör samman i arbetet med problemlösning och alla är lika viktiga för eleven att utveckla.

Hagland m.fl. (2005) har i sin bok om problemlösning en figur (se figur 1) som visar olika uttryckssformer som eleverna kan använda när de löser uppgifterna och som representerar både begrepp och tillvägagångssätt för eleverna. Uttrycksformerna beskrivs som ett hjälpmedel för både elever och lärare under lektioner med problemlösning eftersom de kan stimulera och utveckla ”tankearbete och kommunikation” (s. 33).

![Figur 1 Uttrycksformer för matematiska tankar.](image)

Den konkreta uttrycksformen handlar om att eleverna konkret kan visa hur de tänkt, exempelvis genom laborativt materiel som finns i klassrummet och som sedan ritas av och blir lösningen till problemet.

Den logiska eller språkliga uttrycksformen är att eleverna löser problemet genom att använda språket, muntligt eller skriftligt, för att redovisa lösningen. I denna uttrycksform ingår det alltså inte att eleven visar sin lösning på ett matematiskt språk.

Den algebraiska eller aritmetiska uttrycksformen för problemlösning är att eleven använder matematiskt språk med symboler och siffror, alltså antingen redovisar lösningen algebraiskt eller aritmetiskt, eller både och.
Den grafiska eller geometriska uttrycksformen handlar om att eleven ritar en bild, gör ett diagram eller en tabell för att presentera svaret på problemet.

Dessa fyra uttrycksformer betyder alltså inte att eleven måste hålla sig till bara ett sätt, utan oftast använder man sig av kombinationer av de fyra för att redovisa sin lösning (Hagland m.fl.). Detta kallar författarna för ”zappande” och det kan visa sig exempelvis när en elev först gör sin lösning med hjälp av det svenska språket och sedan översätter det till ett algebraiskt uttryckssätt. En elev kan också ”zappa” genom att till ett diagram eller tabell ha en tillhörande beskrivning som stödjer den bild eleven har ritat där beskrivningen kan vara antingen i ord eller i siffror som en uträkning. ”Zappandet” kan alltså handla om att man först löser problemet i en uttrycksform och sedan översätter lösningen till en annan, eller att man förstårker lösningens rimlighet genom att visa på fler än ett sätt.
5. Material och metod

5.1. Urval

Jag valde att utföra undersökningen i en klass som jag haft kontakt med tidigare. Detta med anledning av att jag kände eleverna och de kände mig, vilket förhoppningsvis skulle minska den påverkan och distraktion som undersökningen kunde orsaka. Jag valde också denna klass då jag visste att de arbetade med problemlösning regelbundet. Klassläraren tillfrågades om hon och klassen ville delta och de informerades om området samt att läraren informerades om att undersökningen utgick ifrån ett elevperspektiv.

Klassen bestod av femton elever, varav fem var flickor och tio var pojkar. Det ska betonas att kön inte är relevant i denna studie, utan det nämns endast för att läsaren ska kunna bilda sig en uppfattning om klassens utformning. Under lektionerna fanns utöver läraren en resurs tillgänglig i klassrummet för att hjälpa till med material och som stöd för eleverna i arbetet med uppgifterna. Klassen hade en ordinarie resurs som var där under mer än hälften av tillfällena, men under något tillfälle hade resursen en vikarie. Vid något enstaka tillfälle fanns också en lärare i svenska som andraspråk i klassrummet som stöd för de elever som har svenska som andraspråk.

5.2. Datainsamlingsmetod

Den metod som användes för datainsamling var direkt observation på en undersökningens grupp under fem tillfällen med problemlösningsorienterade lektioner. Den metod som användes i studien var en kvalitativ fallstudie. Då frågeställningarna syftade till att ta reda på hur elever i en viss specifik grupp arbetar med problemlösning i klassrummet ansågs en fallstudie vara lämplig som forskningsmetod. Eftersom fallstudier ämnar att ingående studera en företeelse, anser Stukát (2011) att denna metod passar då ”det inte går att skilja det man särskilt studerar från kontexten” (s. 37).

Forskningsmetoden är en djupgående sådan där platsen för händelsen, i detta fall klassrummet där problemlösningslektionerna ägde rum, studerades i syfte att få fram kontextbaserad kunskap. Den kunskap som forskaren får ut av denna metod har möjlighet att vara relaterande till liknande situationer, trots att det är svårt att dra generaliserande slutsatser om resultatet (Stukát, 2011).

Undersökningensmetoden som användes var observationer i syfte att kunna svara på undersökningens första och andra frågeställning. Datainsamlingen skedde genom ickedeltagande observationer, där protokoll fördes och med hjälp av ljudinspelning. Protokollet bestod av förberedda frågeställningar (se bilaga 1) och svaren på dessa frågor skrevs ned som anteckningar i både löpande text och som stödord. Ett protokoll med löpande text är något som ger ett tydligt resultat och är lätt att förstå för läsaren (Stukát, 2011). Nackdelarna är att det är tidskrävande samt att det behövs en genomtänkt förberedelse hos den som använder metoden. Därför förbereddes frågeställningar till varje observation där korta svar och stödord ofta räckte men att det
ändå skulle vara tydligt att förstå vad som observerats. Stukåt (2011) anser att en observerande metod är den mest lämpliga när det handlar om att svara på frågor som handlar om människors beteende och när man vill se hur individer arbetar och vad de faktiskt gör. Författaren argumenterar också att det resultat som ges av observationer ofta är konkreta och lätta att förstå och att de därför ger utrymme till den undersökande att kunna fortsätta tolka och resonera utifrån det material som insamlats. Jag valde att inte göra intervjuer eftersom mina frågeställningar grundar sig i att undersöka hur eleverna arbetar med problemlösning i klassrummet och hur de kommunicerar, vilket jag anser att intervjufrågor inte kan ta reda på.

För att valida den valda forskningsmetoden gjordes observationerna vid flera tidpunkter där samma fenomen kunde observeras för att se variationer och samband (Patel & Davidson, 2011).

5.3. Procedur

Observationerna utfördes med hjälp av ett observationsprotokoll där frågor skrivits ner innan varje besök ägt rum (se bilaga nr 1). Detta för att ge struktur att kunna notera det som undersökeren ville ha svar på och i protokollet lämnades det också rum till fria observationer i löpande text. Under varje besök användes också ljudinspelning för att kunna göra senare upptäckter i efterhand. Stukåt (2011) poängterar att när man kan spela upp observationen efteråt så stärker man observationen och kan göra sina påståenden säkrare, men samtidigt kan man få felkällor om den observerade uppför sig annorlunda om de är medvetna om att de är observerade. Dessa faktorer har tagits i beaktande under analysen av materialet.

Observationerna gjordes under matematiklektioner som handlade om problemlösning, som hölls en dag i veckan. Fem besök gjordes under en tidsperiod av åtta veckor. De uppgifter som eleverna arbetade med tillhandahölls av läraren och läraren styrde lektionen.

En svaghet med observationsmetoden är att det är svårt att uttrycka något om alla elever eftersom metoden är direkt observation under en begränsad tid och det går inte heller att säga något generellt om elevers arbete med problemlösning då bara en klass har undersökt. Men med denna insamlingsmetod går det att se arbetssätt och tendenser hos eleverna genom de data som samlats in för analys och som sedan redovisas i resultatet. Styrkan med metoden är att det som observeras – arbetet i klassrummet – sker direkt på plats i rummet och det är det undersökningen vill ha svar på.

5.4. Observationerna

5.5. **Etiska ställningstaganden**

5.6. **Bearbetning**

Eftersom studien genomfördes med kvalitativ metod analyserades datamaterialet utefter detta och jag valde att använda mig av Grundad teori (Denscombe, 2016) som analysmetod av mitt material. Denna metod går till så att materialet analyseras stegvis, och även fast författaren påpekar att denna metod brukar användas för data från intervjuer går det även att tillämpa metoden på observationer. Det första steget är att forskaren gör sig noga bekant med sitt data, vilket genomfördes genom transkribering av ljudinspelningarna och genom att föra anteckningar från observationerna. Denscombe menar att det är viktigt att forskaren gör sig bekant men även medveten om datamaterialets omfattning och att det finns mycket att granska och ”att förstå data i dess kontext.” (2016, s. 394). Forskaren ska sedan hitta teman i sitt data, vilket gjordes under transkriberingen och granskningen av observationsprotokollen. Denscombe anser
att minnesanteckningar är något som forskaren bör föra under sin analys som stöd i processen.

I ett nästa steg tolkades det insamlade datamaterialet genom att koda för att hjälpa mig att se samband och mönster mellan delarna. Detta uppfylldes genom att markera delar i transkriberingen med olika färger och genom att göra tabeller. Transkriberingarna färgkodades efter kategorier som jag skapade själv, till exempel har de delar som handlar om korrekta muntliga lösningar blivit överstruckna med gul färg och de delar som handlar om felaktiga muntliga lösningar blivit överstrucket med röd färg. Jag har också färgkodat de signalord som har med förmågorna kommunikation och resonemang att göra. Exempel på detta är delar när eleverna diskuterar och förklarar lösningarnas rimlighet, vilket tyder på resonemangsförmågan, vilket överströks med grön färg.

Slutligen kontrollerades och justerades kategorierna, vilket även kunde komma att utvecklas under tidens gång. Denscombe menar att grundad teori används för att hjälpa forskaren att skapa nyckelbegrepp för sin forskning och den syftar på så vis att hjälpa forskaren med att i sin studie kunna dra slutsatser och framföra teorier.

![Diagram](image)

Figur 3 Analys av kvalitativa data.

I studien valdes också att analysera det läromedel som eleverna använde, för att få en förståelse för hur eleverna arbetade med problemlösning i sin vanliga arbetsbok inom matematik. Analysen fokuserade på hur området beskrivs i lärarhandledningen, hur många problemlösningsuppgifter som läromedlet hade och om det fanns något utöver elevernas läroböcker som handlade om problemlösning.
6. Resultat

I detta avsnitt presenteras undersökningens resultat. Först redovisas elevernas läromedel utifrån dess innehåll av problemlösning. I ett nästa steg presenteras resultatet utifrån lektionerna och de observerade elevparen.

6.1. Läromedlet

Det läromedel som klassen i undersökningen använde är Prima Matematik för skolår 1 (Gleerups, 2008) och eleverna hade avklarat bok 1A och arbetade i bok 1B. Vid analysen av lärarhandledningen står det beskrivet att läromedlet utgår från de nationella målen i matematik och vid läromedlets genomgång av materialets mål nämnns:

- Tal och talens beteckningar
- Räkning med positiva heltal
- Rumsuppfattning och geometri
- Mätning
- Statistik

Trots att problemlösning inte fanns nämnt i arbetsböckerna som eleverna använde, fanns det utanför böckerna. Under lektionerna använde läraren en plansch ifrån Prima Matematik som hette ”Problemlösningens fem steg”. Detta material användes i klassrummet när undersökningen ägde rum.

Planschen hette ”Problemlösningens fem steg” och dessa steg handlade om att:

1. Eleverna ska läsa uppgiften
2. Eleverna ska tänka och planera
3. Eleverna ska lösa uppgiften
4. Eleverna ska redovisa lösningen
5. Eleverna ska undersöka om deras lösning är rimlig

Detta symboliserades genom en bild på en tecknad hand, där tummen var nummer ett och pekfingret nummer två o.s.v. (se figur 4). Läraren använde detta som hjälpmedel för eleverna under problemlösningslektionerna och den sattes upp på tavlan framme i klassrummet och eleverna instruerades att använda alla fem steg.

6.2. Lektionerna

Resultatet redovisas baserat på de frågor som var formulerade i observationsprotokollet (se bilaga 1). Utifrån frågorna har jag formulerat nya underrubriker för att redogöra resultatet från lektionerna.

6.2.1. Upplägg

De fem lektioner jag observerat kan alla sammanfattas som följande:

Varje problemlösningslektion inföll under samma dag och tid i schemat varje vecka, på förmiddagarna efter tiorasten. Lektionerna var 50 minuter långa med ungefär samma tidsupplägg varje gång. Endast några få minuters skillnad mellan varje del kunde noteras. Läraren ägnade 5-10 minuter till introduktion av uppgiften, lektionens syfte och mål samt hur man arbetar med problemlösning. Syfte och mål skrevs upp på tavlan i en liten ram där det stod ”Målet med lektionen är…”. Under lektionen användes ett hjälpmedel (se figur 4) ifrån klassens läromedel som handlar om problemlösningens fem steg. Stegbeskrivningen användes vid varje lektion och läraren uppmuntrade eleverna att följa dessa när de kom fram till sina lösningar.
Figur 4 Problemlösningens fem steg (Prima matematik).

När läraren gick igenom varje problem lästes det först och sedan visades problemet tillsammans med text och bild på Activeboarden. Läraren förklarade svåra ord och begrepp, delvis med anledning av att mer än hälften av eleverna har annat modersmål än svenska. Men det ska betonas att dessa elever bara går i årskurs 1, de är alla nybörjare i läsning och stavning, samt i ämnet matematik. Därför såg hon till att skapa en förståelse för eleverna om vad uppgiften handlade om.

Ett exempel på detta är problemlösningsuppgiften från lektion nummer 2 som handlade om en sandlåda (se bilaga 3). Läraren frågade först vad en sandlåda är och det fastslogs att det är en sådan som fanns ute på skolgården och läraren frågade då vad man kan göra i en sandlåda. En elev svarade att man leker och bygger med sand. Då frågade läraren om man gör det med händerna och gräver upp sand vilket medförde att många av eleverna utbrast ”Nej!”. En elev svarade att man brukar använda hink och spade. Läraren visade då uppgiften som handlade om en grupp med barn som har olika färger på spadarna och elevernas uppgift blev att lösa hur många som har gul och hur många som har röd spade. På så sätt skapade läraren en förståelse hos eleverna om vad uppgiften handlade om.

Ett annat exempel på hur läraren hjälpte eleverna under introduktionen av uppgiften var användningen av bildstöd, något som gjordes under det första observationstillfället. Då skulle eleverna komma på olika kombinationer av ytterkläder och då använde läraren bilder på de olika klädtyperna som fanns i uppgiften (se bilaga 2). Hon satte upp
laminerade bilder på tavlan som visade de olika kläderna och läraren gick igenom vilken som var vad, t.ex. en lång halsduk, en kort halsduk, en röd jacka osv. Bilderna som sattes upp på tavlan var likadana som de som fanns i uppgiften. Detta gjorde det tydligt för eleverna att det var skillnad på de olika plagggen, samt att det bara fanns ett av varje för barnen i uppgiften att välja mellan. Ett annat stöd som eleverna fick använda var en linjal, som fanns som hjälpmedel för att komma fram till lösningen till ett problem med en bräda (se bilaga nr 6).

Om läraren ansåg att paret hade en rimlig lösning fick de skriva ner sina svar i sina problemlösningsböcker. Det poängterades att eleverna inte bara skulle ha ett svar, utan
att de också skulle kunna visa i sin lösning hur de kom fram till svar antingen med att rita och göra bilder, eller att skriva på det läraren kallade ”mattespråk”, alltså ett svar med matematiska termer. Ett exempel på detta var under observation 2, där det par som observerades hade skrivit ner sitt svar och när läraren tittade på vad paret hade skrivit sa hon att de måste visa hur de tänkt och visa att det stämmer. Deras svar var rätt men hon ville att de med ett korrekt matematiskt språk skulle skriva hur de visste att det stämde. Eleverna förstod inte först hur hon menade, men efter att de funderade tillsammans med lite betänketid utbrast ena eleven att ”ja, två pojkar plus tre tjejer är ju lika med fem barn!” Eleven kunde då översätta sin ursprungliga språkliga lösning och visa hur det stämde med en aritmetisk lösning, det som Hagland m.fl. (2005) kallar för ”zappande” mellan uttrycksformerna.

Under detta moment hade eleverna ungefär 30 minuter på sig att färdigställa sina lösningar och skriva in det i sina böcker. De resterande 10 minuterna ägnades åt en gemensam genomgång av lösningsförslagen där eleverna fick presentera sina förslag och resonera om rimligheten i det som lagts fram. Om ett förslag som presenterades inte var korrekt, kunde läraren konkret visa hur det inte stämde, exempelvis genom att rita eller visa med linjal, eller med uträkningar. Ofta när eleverna kom med orimliga lösningsförslag berodde det på att eleven hade missat en del i problemet, exempelvis ett krav på att det bara fanns en pojke som hade en röd spade (se bilaga 3). Förslagen redovisades genom att läraren ritade upp det på Activeboarden för alla att se. Slutligen när de rätta lösningarna skrivits upp fick alla några minuter på sig att ändra i sina böcker och skriva rätt svar, om det var så att man hade en lösning som inte stämde. I slutet av lektionen kunde läraren ibland påpeka att det problem som de jobbade med var ett sådant som bara hade en lösning, eller att det var en uppgift som behövdes lösas i flera steg för att kunna hitta rätt svar till, eller en uppgift med flera lösningar.

Lektionernas genomsnittliga tidsfördelning sammanfattas i följande diagram:

![Diagram 1 - Lektionernas genomsnittliga tidsfördelning](image-url)
6.2.2. Instruktioner

Under alla observerade lektioner har eleverna blivit instruerade att arbeta och gå till väga på olika sätt.

I början av lektionen, under introduktion av uppgiften, brukade läraren alltid ägna några minuter till att berätta om hur man arbetar när man jobbar med problemlösning. Det genomfördes ofta genom att ställa frågan ”hur ska man tänka när man jobbar med problemlösning?” och låta en elev svara. Eleverna brukade då svara att man ska samarbeta och i dessa fall ställde läraren följdfrågan ”och hur gör man när man samarbetar?”.

En av instruktionerna som gavs till eleverna var att samarbeta för att komma till lösningarna till problemet. Läraren brukade också säga till eleverna att det första man ska tänka på när man får en problemlösningsuppgift är att undersöka och lista ut vad det är som det frågas efter. ”Vad är det jag ska ta reda på?”. En annan uppmaning som läraren gav eleverna var att fråga eleverna (ofta efter uppläsningen av uppgiften) ”vad är det dom vill att jag ska ta reda på?”.

När det sedan var dags för eleverna att börja arbeta tillsammans, instruerade läraren dem om vikten av att lyssna på varandra. Just denna del, att de fick tydliga instruktioner om att lyssna på varandra, blev mer framträdande under de senare observationerna. I observation 1 och 2 noterades ett större fokus på att eleverna skulle samarbeta, i de senare observationerna upppepade läraren fler gånger att de faktiskt var tvungna att lyssna på varandra ”för kanske är det så att er kompis har rätt svar, men ni är aldrig för upptagna att försöka lösa det själv att ni inte hör den bredvid er som har en rimlig lösning.”

Läraren berättade också för eleverna att för att lösa vissa problem är man tvungen att börja i rätt ände. ”Det gäller att bena ut vad man vet och titta noga på texten framför er. Vad är det vi får veta för information och vad är det jag ska räkna ut?” I det tredje problemet (se bilaga 4) fanns kriterierna för den geometriska tavlan uppradade i meninger och det första egentliga fakta som eleverna kunde utgå ifrån stod först i den tredje raden. Alltså var eleverna tvungna att läsa allt, undersöka var de kunde börja, för att sedan kunna börja konstruera en lösning.

Elevernas instruktioner för arbetet under problemlösningslektionerna kan alltså sammanfattas som:

- Undersöka och utreda (Vad vet vi?)
- Samarbeta
- Lyssna på varandra

6.2.3. Muntligt aktiva

Antalet muntligt aktiva under observationstillfällena varierade. Klassen bestod av 15 elever och ett exempel på muntlig aktivitet var under lektion 1 där eleverna var muntligt aktiva 16 gånger, där 6 av dessa innefattade elever som gav sina lösningsförslag.
Lektionernas variation av antalet elever som var muntligt aktiva och antal kommunikerade lösningsförslag redovisas nedan (se diagram 2).

De elever som räknades in i de orangea staplarna är alltså det antal elever som räckte upp handen och muntligt kommunicerat sina lösningsförslag i slutet av lektionen under den gemensamma genomgången. De gula staplarna visar alla muntliga aktiviteter under lektionerna och där är lösningsförslagen inkluderade. Exempel på annan muntlig aktivitet än lösningsförslag var elever som räckte upp handen för att svara på frågor som läraren ställde, för att ställa egna frågor, eller för att resonera om andra elevers lösningsförslag.

6.2.4. Pararbetet

När eleverna parades ihop två och två (eller ibland tre) observerades eleverna på nära håll och det noterades exempel då de arbetade genom att visa lösningarna för varandra. Vid dessa tillfällen brukade många elever börja om och läsa uppgiften högt igen, för att se om lösningarna stämmer med de kriterier som uppgiften har. Vid observationer av elevparen där ena eleven var mestadels tyst, noterades det ofta att det inte blev vidare mycket diskussion efter att lösningsförslagen lästs upp och arbetet saktades ner. Arbetet togs sedan inte upp igen förrän läraren satte sig ner för att stötta eleverna att fortsätta lösa uppgiften. Vid observationstillfälle nummer två noterades det att ena eleven hade vad som kunde tolkas som svårigheter med att förstå vad uppgiften egentliga frågade efter. Eleven vände sig upprepade gånger om för att läsa ut kriterierna högt och eleven uppfattades inte vilja lyssna på den andres förslag eller ta emot någon hjälp. Eleven hade inte kommit fram till något eget lösningsförslag under de första fem minuterna, när

\[\text{Diagram 2} \quad \text{Elevernas muntliga aktivitet under lektionerna} \]
det var tid att jobba tillsammans observerades i början inget direkt samarbete mellan parterna.

6.2.5. Kommunikation

Eleverna kommunikerade med varandra genom att berätta sin lösning och ställa frågor (ex. ”År det en kort eller lång halsduk?” i avseende till det eleven har ritat). Denna grupp tittade mycket på varandras lösningar och vad bågge hade skrivit. Vid några tillfällen gav den ena eleven mycket kommentarer angående den andres stavning och formulering av meningar.

Eleverna kommunikerade med varandra genom en hög grad av argumentation, där ena eleven helst ville lösa problemet själv och valde att inte lyssna på den andra elevens lösningsförslag (som var korrekt). Till slut kunde eleverna komma fram till en lösning tillsammans, men mycket tid lades på att argumentera om vad problemets kriterier sa och vad som stämde och inte stämde. Vid ett tillfälle frågade ena eleven ”men hur många gula spadar finns det, två eller tre?” och E1 sa ”men man får hur många man vill så länge man kommer på någotstå!” Detta stämde inte, eftersom det i uppgiften stod att två barn hade gul spade.

Eleverna kommunikerade med varandra genom att endast en elev pratade, styrde kommunikationen och bidrog till att komma fram till en lösning. I båda paren fokuserade de som pratade mest på mig och försökte komma fram till en lösning genom att ställa frågor till mig eller läraren. Vid observation av elevpar nr 3 flyttade jag på mig för att försöka förhindra att eleven skulle välja att prata med mig hellre än med sin klasskamrat. Jag placerade mig bakom den andre eleven men efter det skedde inget samtal alls mellan det observerade paret. I elevpar nr 5 satt jag istället kvar när jag upptäckte att samma sak höll på att hånda och jag bad den mer pratsamma eleven att resonera med sin klasskamrat istället för mig. Jag upprepade lärarens uppmaning om samarbete, att dessa lektioner handlar om att eleverna ska lösa problemet tillsammans
och inte att prata med mig. Eleven nickade och sa ”ja, jag vet” men trots detta blev det ingen riktig kommunikation mellan dessa elever.

6.2.6. Elevvernas resonemang utifrån lösningsförslagen

Alla elever med ett eget lösningsförslag förklarade det genom muntligt berättande och visande av sina lösningar. Inte vid något tillfälle var det någon elev som försökte visa ett annat sätt hur den kom fram till sin lösning. Ingen elev sökte sig till laborativt material för att visa hur de tänkt, utan alla gjorde sina förklaringar muntligt. Vissa elever var väldigt blyga och tysta i sin förklaring och kunde exempelvis skjuta fram sin tavla och tyst säga ”såhär tänkte jag”. Läraren uppmanade alltid eleverna att förklara hur de tänkt, inte bara visa. Men några elever var mer intresserade av att lösa problemet självt, istället för att lyssna på sin kamrats förslag till lösning. Exempel på detta är i elevpar nr 2 (se bilaga 3) där den elev kallad E2 hade kommit fram till ett eget lösningsförslag som var korrekt. När E2 beskrev sin lösning sa han ”pojkarna har varsin färg, och en flicka har gul”. E1 sa då ”vänta vad sa du?” och det noterades då något slags intresse i att förstå svaret och hur han hade resonerat. Men då E2 läste upp sitt svar igen blev han lite osäker och frågade ” hur många gula spadar var det nu igen?” E1 läste då upp hela uppgiften, och E2 svarade ”men hur många gula spadar finns det, 2 eller 3?” E1 sa då att ”man får hur många spadar man vill så länge man kommer på någonting”. Detta är inkorrekt i uppgiften, det finns bara 2 gula spadar och detta står beskrivet i uppgiften som ”två barn har gul spade”. Då sa E2 ”okej då har jag skrivit lite fel”. Eleven började resonera om uppgiften igen och hur han tänkt, men E1 avbröt efter ett tag hans resonemang med att säga ”vänta nu kom jag på en idé!”. Eleverna började då resonerar fram och tillbaka. E2 försökte vid ett tillfälle säga något, men E1 sa åt honom att vänta och eleven utbrast till slut att han inte kom på någon lösning. E1 visade uppenbar irritation på att han inte kunde komma på svaret själv. Istället för att lyssna på sin kamrats förklaring av sin lösning valde han att istället tysta honom och avbryta E2s försök till förklaring.

Nedan följer en tabell över elevgruppernas muntliga aktivitet jämfört med deras skriftliga prestationer.
Tabell 1 Elevgruppernas resultat

I tabellen redovisas varje elevgrupps resultat, både om de hade en egen skriftlig lösning innan de började sitt grupparbete och om de tillsammans kunde komma fram till en gemensam lösning, samt om de i slutet av lektionen var muntligt aktiva i den gemensamma genomgången. Om de hade en egen skriftlig lösning i början av lektionen står det också om den var rimlig eller ej.

<table>
<thead>
<tr>
<th>Elevgrupp 1</th>
<th>Skriftlig prestation (hade ett eget lösningsförslag och om det var rimligt)</th>
<th>Kunde gruppen tillsammans komma fram till en gemensam lösning?</th>
<th>Muntlig aktivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Ja (rimlig)</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>E2</td>
<td>Ja (rimlig)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elevgrupp 2			
-------------	--		
E1	Nej	Ja	Ja
E2	Ja (rimlig, både a och b)		

Elevgrupp 3			
-------------	--		
E1	Ja (inte rimlig)	Nej	Ja
E2	Nej		Nej

Elevgrupp 4			
-------------	--		
E1	Ja (inte rimlig)	Nej	Nej
E2	Ja (inte rimlig)		Nej
E3	Ja (inte rimlig)		Nej

Elevgrupp 5			
-------------	--		
E1	Ja (inte rimlig)	Nej	Ja
E2	Ja (inte rimlig)		Nej
7. Analys och diskussion

Här knyts det analyserade resultatet an till studiens frågeställningar. I analysen vävs resultatet ifrån observationerna samman med den tidigare forskningen samt med studiens teoretiska utgångspunkt. Avsnittet avslutas med en kritisk diskussion av studiens använda metod.

Syftet med studien är att undersöka hur elever i ett klassrum arbetar och utvecklar sin problemlösningsförmåga samt att undersöka hur kommunikationen sker under lektioner med problemlösning. Studiens teoretiska utgångspunkt grundade sig i tre av de matematiska förmågorna och med hjälp av Denscombes pyramid (2016) för grundad teori, har jag konstruerat en pyramid för att förstå det analyserade materialet och för att redovisa resultatet i fallstudien angående elevernas arbete med problemlösning. Det insamlade kvalitativa datamaterialet har kodats och kategorierna syns nedan. Syftet med pyramiden inom grundad teori är att just klargöra begrepp och syftet med en fallstudie är att ”belysa det generella genom att titta på det specifika”, (s. 91, 2016).

Pyramiden nedan är uppbyggd av de tre begreppen ”förmågorna”, ”eleverna” och ”lärarens betydelse” som i sin tur har tillhörande kategorier. Med ”förmågorna” menas den kommunikativa förmågan och den resonerande förmågan. ”Eleverna” innefattar elevernas samarbete i elevparen, deras tidigare kunskaper och metakognition. ”Lärarens betydelse” handlar om de instruktioner som eleverna fått och den stöttning som läraren gett under lektionerna, samt lektionens utformning.

![Diagram](image)

Figur 6 Sammanfattning av elevernas arbete med problemlösning
Analysen utgår ifrån pyramidens kategorier och det analyserade resultatet redovisas nedan med hjälp av kategorierna som underrubriker, samt med andra rubriker för att kunna göra analysen fullständig.

7.1. Arbete med problemlösning

Läromedlet

Det läromedel som klassen arbetade med innehöll inga uppgifter eller områden som handlade om problemlösning. Läraren tog alltså initiativet till att tillföra annat material för att kunna utforma dessa lektioner om problemlösning, samtidigt som klassen fortsatte att arbeta med läromedlet under andra matematiklektioner. Dessa elever har alltså arbetat med problemlösning i över en termin innan denna undersökning gjordes och det var på lärarens initiativ som lektionerna infördes. Hade läraren valt att bara arbeta utifrån läromedlet hade eleverna alltså inte fått samma möjligheter till att jobba med problemlösning. Som Lester (1996) menar är det viktigt att läraren är medveten om att problemlösningsförmågan tar lång tid att utveckla, men eftersom dessa elever går i årskurs ett och redan kontinuerligt arbetar med problemlösning är de på mycket god väg. En annan förutsättning för att utveckla förmågan är enligt Lester att eleverna får möjlighet att lösa många uppgifter av problemlösningskaraktär, vilket dessa elever får när de jobbar med annat material än det läromedel de annars arbetar med. Så även fast deras läromedel i matematik saknar problemlösningsuppgifter, verkar dessa elever ändå vara på god väg att utveckla förmågan genom de möjligheter de ges.

Lektionens utformning

Elevernas metakognition och tidigare kunskaper

Under lektionerna med problemlösning fick eleverna möjlighet att reflektera, tänka tillbaka på tidigare uppgifter och vad de kan inom matematiken. Här kan man ställa sig frågan om eleverna själva var medvetna om sin egen kunskap, om de har en metakognitiv förmåga. Vet eleverna att de kan komma fram till en lösning med hjälp av de kunskaper de besitter? Enligt Schoenfeld (1992) behöver eleven en utvecklad metakognitiv förmåga för att kunna pröva om och använda nya metoder för att lösa problemet, vilket observerades vid några få fall, men oftast prövade eleverna inte nya
spår utan de fortsatte med samma lösningsförslag ända tills läraren instruerade dem att byta metod.

Lärarens betydelse
Vid de tillfällen där eleverna enskilt försökte komma fram till en lösning var lärarens instruktioner av stor betydelse – läraren skulle förmedla vad eleverna skulle fokusera på, vad de skulle göra, varför det var viktigt att lyssna och vara uppmärksam på vad uppgiften frågade efter. För att läraren ska kunna skapa meningsfulla möjligheter för eleverna behöver han eller hon vara medveten om hur de tänker, för att eleverna skall ges möjlighet till att kunna lösa problemet (Hattie, 2009; Taflin, 2007) samt ha en struktur i upplägget av lektionen med ett lämpligt innehåll (Lester, 1996). Lester redogör för betydelsen av lärarens känsla för problemlösning och hur viktigt det är att läraren synliggör detta för eleverna. Läraren i undersökningen hade väldigt tydliga instruktioner om hur eleverna skulle arbeta, inte bara genom Problemlösningens fem steg ifråga läromedlet utan också genom att inleda varje lektion med att repetera hur man arbetar med problemlösning, hur man gör när man samarbetar o.s.v. Eleverna verkade
ha tagit till sig denna information väl, då de kunde svara på lärarens frågor om samarbete och problemlösning, men det är oklart om eleverna faktiskt upplevde en betydelse och mening i det de gjorde. De elever som arbetade på väl under lektionerna fann antingen inre eller yttre motivation till att lösa problemen, men som Hattie (2009) menar är läraren den viktigaste faktorn för att eleverna ska kunna utvecklas. Läraren måste vara medveten om hur eleverna tänker för att kunna skapa dessa möjligheter till utveckling, men trots att denna lärare bara jobbat med eleverna i mindre än två terminer tycks gruppen få ta del av många värdefulla möjligheter och vara på god väg i sin utveckling.

Lärarens stötning och instruktioner

Läraren i undersökningen instruerade eleverna övervägande genom råd som handlade om att eleven skulle fortsätta tänka själv eller läsa problemen en gång till. Denna slags hjälp menar Lester (1988) är till nytta för de flesta elever, men inte för dem som direkt behöver hjälp med att gå vidare i sin lösning. Läraren måste i arbetet med problemlösning kunna ge hjälp som är av både kvalité och kvantitet, och i undersökningen gav läraren vid tillfällen instruktioner till eleverna som var tillräckliga för att kunna fortsätta lösa problemet. I exemplet med sandlådan (se bilaga nr 3) hade eleverna en korrekt lösning men läraren instruerade parter att skriva det på ”matte språk” istället, alltså som en aritmetisk lösning. Denna instruktion var tillräcklig för eleverna att kunna komma fram till den efterfrågade lösningen själv, även fast parter inte kom på det på en gång. Men, för att reflektera tillbaka till tabellen över elevgruppernas resultat (se tabell nr 1), kan man se att mer än hälften av elevparen inte kunde komma fram till en gemensam lösning, samt att det bara var tre av elva elever som kom fram till egna rimliga lösningar. Vad är det då som gör att så många elever i undersökningen inte lyckades komma fram till lösningar, varken enskilt eller i grupp?

Elevernas svårigheter med att hitta en lösning

För de elevpar där orken snade och ena eller båda parterna gav upp i att hitta en lösning, kunde det bero på att eleverna inte såg någon betydelse i varför de arbetade med det och det var därför intresset avtog. Som Lester (1996) menar är det av yttersta vikt att läraren kan förmedla en betydelse för det eleverna gör, att det finns en mening i det de gör, annars är det svårt för eleverna att se arbetet som givande. En annan anledning till varför eleverna inte kom fram till en lösning kan vara att de inte hade tillräckligt med strategier. I elevpar nummer 3 samarbetade inte eleverna och ingen av dem kunde enskilt komma fram till en korrekt lösning, vilket enligt Lester (1996) kan bero på att eleverna inte hade tillräckligt med strategier för att lösa problemet. Här argumenterar Hagland m.fl. (2005) att det är lärarens uppgift att visa på andra perspektiv till lösningarna, inte att undervisa om lösningsstrategier. Författarna anser också att om en kunskapsutveckling ska ske måste eleverna själva upptäcka området där deras kunskaper behöver tillämpas. Men i dessa fall, där eleverna uppenbart inte kommer fram till något i sitt arbete, måste läraren kunna ge givande instruktioner så att
Eleverna måste Häggblom utrymme gruppen lyckades eftersom om sådant sätt att strategier och metoder delas ut, utan att läraren istället låter eleverna ta sig an strategier på ett naturligt vis samt uppmärksammar det när eleverna använder dem. Det var på detta sätt som denna lärare stöttade eleverna, genom att låta eleverna själva upptäcka strategierna och att uppmärksamma det när det hände.

Betydelsen av lektionens sista del

Men även om paren inte alltid haft egna lösningsförslag, observerades det ändå tillfällen när eleverna fick öva på att resonera om varför de andra elevernas förslag stämde. I sitt arbete med problemlösning drog Cederqvist (2009) slutsatsen att problemlösningslektionens sista del, redovisningsfasen, var den del som var mest givande i elevernas lärande. Som i Cederqvists fall, och i denna undersökning, fick eleverna möjlighet att under den avslutande fasen resonera om både sina egna och andras förslag, samt att lyssna på andras lösningar och tankegångar. Cederqvist hade olika problemlösningsuppgifter som var nivåbaserade, vilket ledde till att alla elever inte alltid hann ta del av varandras lösningar. Men eftersom eleverna i denna undersökning löste samma problem, gavs de alltid möjlighet att få lyssna på varandras lösningar och ta del av sina klasskamraters resonemang. Vidare anmärkte Cederqvist att trots att alla elever fick möjlighet att redovisa sina svar, var det inte alla elever som kunde redovisa svaren skriftligt. I utvärderingen hade hon önskat att lösningarna hade dokumenterats för att ge dessa elever en chans att skriva ner lösningarna, vilken läraren i denna studies undersökning genomförde. Under varje observationstillfälle avsattes det alltid tid för eleverna att, om de inte hade en rimlig lösning nedskriven i sina böcker, skriva ner lösningen som var dokumenterad på Activeboarden. Cederqvist upplevde också att grupper om fyra elever var för stort, och läraren i den här studien hade grupper om två. I det fall där gruppen med tre elever observerades, gjordes tolkningen att samarbetet nog hade haft större chans att lyckas om det bara hade varit två elever. Detta eftersom denna grupp, trots lärarens uppmunringar om att samarbeta och fokusera, inte lyckades att samarbeta och lyssna på eleven som försökte förklara sin lösning. Om gruppen hade bestått av bara två elever hade eleven med ett lösningsförslag haft mer utrymme att förklara sitt resonemang och den andra eleven hade haft större möjlighet att fokusera och kunna förstå lösningen.

Elevernas uttrycksformer för lösningarna

Häggblom menar att för att läraren ska kunna förstå hur eleverna tänker och resonerar, måste språkanvändningen i klassrummet verka på ett sådant sätt att tankarna synliggörs. Eleverna i undersökningen fick möjlighet att synliggöra sina tankar främst genom lösningarna de hade till problemen. Med hjälp av Haglands m.fl. (2007) modell för
uttrycksformerna för lösningar till problem (figur 7) analyseras elevernas lösningar av problemlösningsuppgifterna.

![Diagram](https://via.placeholder.com/150)

Figur 5 Uttrycksformer för matematiska tankar.

7.2. Kommunikation

Skriftlig och muntlig kommunikation

Kommunikationen under problemlösningslektionerna yttrades sig på en rad olika sätt. Eleverna fick öva både muntligt och skriftligt på att kommunicera sina matematiska tankar, samt öva på att muntligt kommunicera med läraren och med varandra. Under observationerna har det iakttagits en aktiv språkanvändning inom matematik och det är
enligt Häggblom (2013) detta som är bron mellan den kunskap eleverna besitter och det nya inom matematikämnet som de möter. Enligt lärarens instruktioner skulle paren alltid kommunicera med varandra och tala om för varandra hur de tänkte, även om de själva förstod sin lösning och att det verkade självklart varför lösningen var rimlig. Läraren sa att ”man ska alltid försöka hjälpa den andra att förstå vad lösningen innebär och hur man kom fram till det.” Eleverna fick under detta samarbete träna på sin resonemangsförmåga genom att kunna redovisa sina tankar på papper och ”översätta” tankarna till skrift.

Kommunikationen under lektionerna

Nya kunskaper och utvecklade förmågor

resonerar är det genom det aktiva samtalet i klassrummet som eleverna utvecklar sina kunskaper inom matematik och de får möjlighet att lära sig att argumentera och reflektera över sina och andras lösningar. Häggblom menar att det är lärarens uppgift att se till att miljön de befinner sig i och att den kommunikation som sker skapar möjligheter för eleverna att berätta hur de tänker. Även fast denna elev inte hade redovisat lösningen skriftligt öppnade läraren ändå för nya lösningar från eleverna och gav dem möjlighet att träna på att kommunicera och resonera sina lösningar under varje lektion med problemlösning.

Påverkan och motivation

Vid tillfällen där eleverna löste sina svar med en språklig uttrycksform spenderades mycket tid åt att argumentera om rättstavning och att forma bokstäver åt rätt håll. Enligt Lester (1996) beror detta på elevernas socio-kulturella erfarenheter och uppfattningar om matematik och att dessa elever värderar rättstavning väldigt högt. Detta bekräftas genom att när läraren uppmärksammade detta beteende hos eleverna, gav läraren inga instruktioner om att istället fokusera på lösningens rimlighet än att lösningen var rättstavad utan läraren kunde ibland också påpeka att deras bokstäver var spigelvända. Här kan man fråga sig om detta verkar motiverande eller icke-motiverande för elevernas matematikintresse, för enligt Lester kommer en negativ attityd påverka ens inställning
negativt och prestationerna komma att minska (1996). Är instruktioner om språk och
stavning information som läraren ger till eleven av giving kvalité för att lösa
problemet? Nej, inte om det verkar negativt för elevens självförtroende och som Hattie
(2009) menar är läraren den största påverkansfaktorn för eleven och det är lärarens
uppgift att ge eleven de rätta verkygen för att lösa problemet (Hattie, 2009; Taflin,
2007). Därför skulle jag argumentera att språkkorrigerings och rättstavning inte är de
rätta verkygen läraren ska ge eleven för att utveckla sin problemlösning. Visst hjälper
det eleven att bli bättre på språket, men lektioner om problemlösning kan istället
fokusera på att innefatta verkygen för att bli bättre lösare.

Nya möjligheter till lösningar

I slutet av lektionen övade eleverna på att vara munligt aktiva och de förmedlade sina
lösningar munligt till läraren och till resten av klassen. De fick förklara hur de tänkt
och varför deras lösning ansågs som rimlig. Var lösningen inte rimlig kunde läraren visa
varför och förklara. När läraren skrev upp lösningarna blev de visuellt tillgängliga för
eleverna och ibland kunde vissa elever komma fram till de resterande lösningarna i
eleverna får möjlighet att se och skapa mening i sitt egna arbete, vilket eleverna i
undersökningen observerades få framförallt vid de tillfällen som de kom på nya
lösningar. Om eleverna dessutom får möjlighet att diskutera om ämnet, leder till det
kunskaper som befästs djupare, argumenterar Hagland m.fl. (2005).

Förmågor

De förmågor som har observerats i denna studie som bygger upp elevernas arbete med
problemlösning är kommunikation och resonemang. Enligt Häggblom (2013) bygger de
matematiska förmågorna på varandra och utvecklas med hjälp av varandra, vilket syns i
det resultat som lagts fram i denna studie. När eleverna får möjlighet att diskutera och
samtala om sina lösningar under problemlösningslektionerna fördjupas deras kunskaper
och de får ta del av varandras tankar och resonemang. Genom att eleverna löste samma
problem fick de under varje lektion ta del av rimliga lösningar och alla elever fick
möjlighet att skriva ner korrekta lösningar till de problem de försökte lösa. Eleverna
fick, förutom att utveckla sina matematiska förmågor, tillfällen att öva på att samarbeta
med varandra och ta del av varandras kunskaper. Samtidigt fick eleverna möjlighet att
utveckla sin egna metakognitiva förmåga genom att de behövde använda sina tidigare
kunskaper för att lösa problemen och hitta lösningar. Förutom förmågorna och eleverna
själva, byggde arbetet med problemlösning på lärarens arbete och hur läraren stöttade
eleverna med instruktioner och hjälpmedel. Ibland stöttade läraren på sånt satt som
handlade om att gå tillbaka, läsa, använda problemlösningens fem steg o.s.v., andra
gånger handlade stöttningen om att be eleverna skriva om sina lösningar i andra
uttrycksformer för att förstärka lösningens rimlighet. Lärarens inverkan påverkade
också lektionens utformning och med en välplanerad undervisning där framförallt
lektionens avslutande del byggde på en genomgång av lösningsförslagen, en
återkoppling till hur man arbetar med problemlösning samt undersöker lösningars rimlighet, gavs eleverna många möjligheter att få utveckla alla tre förmågor.

7.3. Metoddiskussion

Den metod som valdes för att besvara undersökningens frågeställningar var observationer i klassrummet. Undersökningen ville besvara hur elever arbetar och detta ansågs inte kunna besvaras genom enskilda enkäter eller intervjuer. Observationerna skulle samla in kvalitativa data om elevernas arbete med problemlösning, hur de kommunicerar och hur de resonerar med varandra. Därför krävdes det observationer som inte påverkade eller lade sig i de situationer som skedde i klassrummet.

Jag fick också förhålla mig kritiskt till att jag faktiskt var en känd deltagare i rummet under observationerna. Under de observationer där eleverna hellre samtalade med mig blev jag medveten om att, just eftersom jag var känd sedan tidigare som lärare för eleverna, såg de mig ibland som samtalspartner och som en lärare de kunde ställa frågor till. Det var vid några tillfällen problematiskt då jag ville att de skulle samtala med varandra, inte med mig, men när de valde att hellre prata med mig satte jag mig antingen på en annan plats eller instruerade eleverna om att syftet med lektionen var att de skulle samarbeta med varandra, inte prata med mig. Men jag är medveten om att det påverkade mitt resultat och hade jag gjort något annorlunda så hade jag nog valt en klass som jag inte arbetat i tidigare.

Trots detta anser jag att den valda metoden fungerade väl för att samla in de data som behövdes för att besvara frågeställningarna. Den hade kunnat utökats med att också göra intervjuer eller enkäter om elevernas uppfattning om problemlösning och samarbete för att komma fram till lösningar till problemen, för att bibehålla elevperspektivet och att fortsätta fokusera på elevernas arbete med problemlösning.

Vid transkriberingen av materialet var jag noga med att påverka det så lite som möjligt. Patel och Davidsson (2011) menar att den som transkriberar ett material mer eller mindre påverkar detta genom att exempelvis lägga till ord vid ofullständiga meningar, skriva om meningar till mer lättlästa och att den transkriberande vid observationer omedvetet kan sätta egna benämningar på sådant som sker. För att validera min
forskning och behålla kvalitén i min studie var det därför väldigt viktigt för mig att vara medveten om hur mycket jag omedvetet kunde påverka information och analys. Vid transkriberingen skrev jag aldrig om citat från elever och lärare och jag försökte så lite som möjligt skriva om någonting med egna ord. Vid tillfällen där jag har tolkat elevernas beteende har det alltid skett med medvetenhet och jag har alltid beskrivit varför tolkningen gjordes och vad som gjort att tolkningen blev som den blev.

Slutligen, för att validera den valda forskningsmetoden valdes undersökningens observationer att göras vid flera tidpunkter där samma fenomen observerades för att se variationer och samband (Patel & Davidson, 2011). Studien resulterade i fem besök men både för att kunna stärka resultatet och de samband som setts, hade fler besök kunnat göras. Det hade gett studien mer material att utgå ifrån och i och med en längre period av observationer hade det funnits större möjligheter att kunna se en utveckling av förmågorna och elevernas arbete i problemlösning.

Under observationerna noterades kommunikationsmönster och arbetssätt och de data som samlades in kunde stå till grund för att besvara undersökningens frågeställningar. Stukát (2011) påpekar att observationerna kan stärkas om man har gjort inspelningar och då kan spela upp dem efteråt. Det gör ens påståenden säkrare, men samtidigt kan man under observationer lätt få felkällor om den observerade uppför sig annorlunda om de är medvetna om att de är observerade och/eller inspelade. Att genomföra inspelningar under observationerna upplevdes som en fördel, även fast eleverna vid vissa tillfällen visade tecken på att bli distraherade utav det. Men det hjälpte vid analysen av det insamlade datamaterialet att ha inspelningarna som stöd och förstärkning till det som noterats under observationerna. Det inspelade materialet användes också igen vid flera tillfällen efteråt när jag ville återkoppla till vissa scenarion, framförallt då jag ville ha med citat i arbetet.
8. Slutreflektioner och didaktiska implikationer

De didaktiska implikationerna av den egna undersökningen som jag kommit fram till är att jag nu bättre kan förstå hur det är att arbeta med problemlösning i klassrummet, framförallt utifrån ett elevperspektiv. Undersökningen har gett mig tankar om samarbete mellan individer och hur man som lärare kan välja att låta eleverna samarbeta. Ska man placera eleverna i par som man vet fungerar, eller ska man försöka variera paren så ofta som möjligt så att eleverna lär sig att kunna arbeta med varandra oavsett? För ju högre upp i åldrarna man kommer, desto mindre blir valfriheten och man vet sällan vem man kan komma att behöva samarbeta med. Har då ens lärare sett till att man fått öva på att jobba med ”alla” blir det kanske mindre besvärligt i framtiden. Men samtidigt vill man ju som lärare att ens elever ska lyckas under problemlösningslektionerna och har man då elevpar där samarbete inte alls fungerar blir det kanske ännu svårare att utveckla elevernas matematiska kunskaper. Jag resonerar då att man med fingertoppsknäslor får göra sina val om vilka elever som ska jobba med vilka, men att man ändå ska sträva mot att ens elever i största mån ska kunna samarbeta med varandra.

9. Litteraturlista

Bilagor

Bilaga 1
Frågeställningar till observationstillfällena.

Frågor om lektionen
- Hur mycket tid ägnas åt introduktion av uppgiften?
- Hur mycket tid får eleverna till att arbeta fram en egen lösning?
- Hur mycket tid får varje grupp till att diskutera (resonera om) lösningsförslagen och att slutföra uppgiften?
- Hur mycket tid ägnas till genomgång av elevernas lösningar?

Observation om elevernas muntliga aktivitet i klassrummet
- Hur många elever är muntligt aktiva?

Frågor under observationen av elevgruppen
- Hur visar eleverna sina lösningar för varandra?
- Hur ser elevernas samarbete ut?
- Kan eleverna tillsammans komma fram till (en) lösning(ar) till uppgiften?
- Är elevgruppen muntligt aktiva under genomgången av lösningsförslagen?
- överensstämmer elevgruppens muntliga svar med deras skriftliga produkt?
Bilaga 2
Problemlösningssuppgift från observationstillfället nr 1, Välja kläder.

Välja kläder

Kim ska gå ut och leka. Han kan välja mellan en röd och en blå jacka, en lång och en kort halsduk, en prickig, en randig och en enfärgad mössa.

På hur många olika sätt kan han vara klädd om han tar på sig

a) en jacka och en halsduk?

b) en jacka och en mössa?

c) hitta på ett liknande problem. Läs det.

BLÅ TAKA LÅNG
BLÅ OCH KORT HALSDUK
RÖD JACKA OCH EN KORT HALSDUK
RÖD JACKA OCH EN JONG HALSDUK
Bilaga 3

Problemlösningsuppgift från observationstillfälle nr 2, *Sandlådan*.

Sandlådan

5 barn har varsin spade, gul eller röd.
3 barn är flickor.
1 pojke har röd spade.
2 barn har gul spade.

a) Hur många barn är pojkar?
b) Hur många flickor har gul spade?

En lika hargul sandlåda. 2 + 3 = 5
Bilaga 4
Problemlösningsuppgift från observationstillfälle nr 3, Deckarproblem ”Tavlan”.

Deckarproblem
Tavlan har 4 olika sorters geometriska figurer.
Hälften är cirklar.
Det är 2 fler kvadrater än andra rektanglar.
Det finns bara 3 trianglar.
Det är en kvadrat mer än det är trianglar.
Hur kan tavlan se ut? Rita.
Kaninungar

1 20 kaninungar hoppade runt i lugn och ro.
Plötsligt kom en räv. Alla kaninungarna hoppade mot de tre kaninhålen så fort de kunde. De hoppade tillsammans två och två in i hålen.
Kan du fördela de 20 kaninungarna på de tre hålen?
Kom ihåg att kaninerna alltid är tillsammans i par.
Hur många sätt kan du fördela dem på?
Bilaga 6
Problemlösningsuppgift från observationstillfälle nr 5, Deckarproblem ”Krokarna”.

Deckarproblem

Alfa vill sätta upp 2 krokar på brädan. Det ska vara lika långt mellan krokarne som till kanterna.

Var ska hon sätta krokarne?