Loudness Control by Intelligent Audio Content Analysis

Hossein Sabri

This thesis is presented as part of Degree of Master of Science in Electrical Engineering

Blekinge Institute of Technology
September 2012
Abstract

Automatic audio segmentation aims at extracting information of audio signals. In the case of music tracks, detecting segment boundaries, labeling segments, and detecting repeated segments could be performed. These information can be used in different applications such as creating song summaries and facilitating browsing in music collections. This thesis studies the Foote method which is one of the automatic audio segmentation algorithms. Numerous experiments are carried out to improve the performance of this method. The most suitable parameter settings of the Foote method, which have the best performance in detection of segment boundaries as correct as possible in real time audio segmentation, have been selected. Finally, real time audio segmentation results were applied to automatically control loudness level of a streaming audio input signal. Our experiments show that this application results in better dynamic structure preserving and faster loudness level adjustment.
Acknowledgements

First of all, I would like to thank my supervisor at Blekinge Institute of Technology, Dr. Nedelko Grbic, who taught me the basic knowledge in audio processing. It was him who made me interested in this research area and also introduced Fraunhofer IIS to me as one of the most intellectual research institutes.

I would like to express my greatest gratitude to my supervisor at Fraunhofer IIS, Dr. Wolfgang Hess, whom offered me this interesting topic and gave me the opportunity to do this research under his supervision. He always helped me with all the coming problems, and I could never finish this thesis without his enlightening instructions and support.

I would also like to gratefully thank Dr. Christian Uhle who always guided me patiently through all the steps of this research. He never withheld his beneficial supports, even when he was pretty busy. I really appreciate all the things he taught me in audio filed and also in MATLAB.

Last but not least, my special thanks to my wife who was always right by my side and supported me in all the steps of this work.

Finally, I could never thank my parents enough for their support and encouragement during my whole life.
Contents

Abstract iii

Acknowledgements v

List of Figures ix

1 Introduction 1
 1.1 Motivation ... 1
 1.2 Audio content analysis 2
 1.3 Contributions .. 3
 1.4 Thesis organization 3

2 State of the art 5
 2.1 Foote method .. 5
 2.1.1 Technical details 6
 2.2 Techniques for the automatic audio segmentation 12
 2.3 Audio feature extraction 13
 2.3.1 Chroma features .. 13
 2.3.2 Mel-Frequency Cepstral Coefficients (MFCC) 15
 2.3.3 Spectral features 19
 2.3.4 Combination of spectral features 21
 2.4 Loudness level measurement (Recommendation ITU-R BS.1770-2) .. 21

3 Audio segmentation 25
 3.1 Parameter settings in the Foote method 26
 3.1.1 Kernel time ... 26
 3.1.2 Frame size ... 27
 3.1.3 Distance measure .. 29
 3.1.4 Feature vectors .. 30
 3.1.5 Summary .. 32
 3.2 Proposed methods to improve the Foote method 33
 3.2.1 Feature vectors manipulation 33
 3.2.2 Relative silent detection 37
 3.2.3 Summary .. 41
Contents

4 Evaluation setup and results 43
 4.1 Evaluation setup .. 43
 4.1.1 Block diagram 43
 4.2 Results .. 44
 4.2.1 Loudness level control 50

5 Conclusion 53
List of Figures

2.1 Block diagram of segmentation process . 6
2.2 Distance matrix calculation . 7
2.3 Similarity visualization of Bach’s Prelude No.1 9
2.4 90 x 90 kernel with Gaussian taper . 10
2.5 Novelty score for Gloud performance and two different kernel size 12
2.6 Shepard’s helix of pitch perception . 14
2.7 Block digram of chroma feature extraction 16
2.8 Visualization of a chromogram . 16
2.9 Block digram of MFCC feature extraction 17
2.10 The mel frequency scale . 18
2.11 Visualization of an MFCC feature extraction 19
2.12 Feature vector visualization using combined spectral features 21
2.13 Novelty score calculation by using three different feature vectors 22
2.14 Block diagram of multichannel loudness level measurement algorithm . . 23

3.1 Impact of kernel time on novelty score . 27
3.2 Impact of frame size on novelty score I . 28
3.3 Impact of frame size on novelty score II 28
3.4 Impact of distance measure on novelty score I 29
3.5 Impact of distance measure on novelty score II 30
3.6 Impact of extracted feature vectors on novelty score I 31
3.7 Impact of extracted feature vectors on novelty score II 32
3.8 Smoothed Spectrogram . 34
3.9 Impact of smoothing spectrogram on the novelty score 35
3.10 Impact of normalization of feature vectors on novelty score 36
3.11 Impact of feature vectors manipulation on novelty score 36
3.12 Fixed threshold for silent relative detection 38
3.13 Adaptive threshold for silent relative detection I 39
3.14 Adaptive threshold for silent relative detection II 40
3.15 Distance normalization by loudness level 41

4.1 Block diagram of evaluation setup . 44
4.2 Effect of the frame size in the evaluation I 45
4.3 Effect of kernel time in the evaluation I . 46
4.4 Effect of kernel time in the evaluation II 47
4.5 Effect of STFT smoothing in the evaluation 47
4.6 Effect of the relative silence detection . 48
4.7 Effect of the data set and the train set on each other 49
List of Figures

4.8 Fixed threshold for the novelty score 50
4.9 Loudness level control .. 50
To my wife who is my everything...
Chapter 1

Introduction

1.1 Motivation

Listeners prefer to experience a uniform subjective loudness level of audio signals of different input signals. As an example, they do not want to get annoyed by loudness level differences when switching between broadcast channels or music tracks. Manually adjusting playback levels is still a common solution to this problem. Therefore, the aim of the automatic loudness control is to compensate loudness differences between different inputs by adaptive adjustment of the playback level. The accomplishment of this procedure depends on a method of modifying the loudness level and a loudness model which is computationally capable of estimating the loudness level before and after the modification. The preservation of the dynamic structure of original input audio signals is the vital issue in this task, i.e. any loudness level modification algorithm should preserve loudness level fluctuations and should not introduce any artefacts within one track. Therefore, the exact segment boundary detection which discriminates different audio signal types is needed for automatic loudness level control. A common problem occurs when the audio segmentation algorithm mistakenly detects segment boundaries within an audio signal source, e.g. within a music track because of the appearance of verse and chorus or within a single speaker’s speech because of the silent/noisy sections during speech. This problem may causes unwanted change in the dynamic structure of audio signal sources. Thus, the accuracy of the audio segmentation algorithm has a direct influence on preservation of the dynamic structure of audio signals. In cases which whole audio signal is previously available, the automatic loudness level control can be done effectively. A challenge occurs when we encounter audio streaming and both, the automatic audio segmentation and the automatic loudness control, must be done in real-time. Although streaming audio cannot automatically leveled to equal loudness
level without affecting its dynamic structure, an intelligent strategy could result in an improved subjective experience if the level adjustment is neither too slow nor to abrupt. This control level method can be guided by audio segmentation which identifies segment boundaries between different tracks and indicates switching between broadcast channels.

1.2 Audio content analysis

Automatic audio content analysis aims to extract information from audio signals. In digital signal processing, audio signals are presented as discrete values which correspond to amplitude levels of sounds. These digital signals contain all information of the sound in the time domain and they should be interpreted in order to obtain meaningful properties in the frequency domain.Presentation of a short interval of an audio signal in the time domain or frequency domain may consist of a large vector. As an example, 20 ms of an audio signal that has a frequency sampling rate equal to 16 kHz will be presented by a vector containing 320 elements in the time domain. A more powerful way of presentation audio intervals with small number of elements is needed. Feature extraction must be done to present each audio interval in a compact and informative form. This process is called audio content analysis.

Automatic audio segmentation could be considered as a subset of the automatic audio content analysis which aims at extracting information about the structure of audio signals. These information could be useful for detecting segment boundaries and labeling each segment. Human listeners can easily detect where the segments such as choruses occur since the chorus sections are the most repeated and memorable sections within a music track. Computers need to be programmed by sophisticated algorithms to be capable of detecting novelty in audio signals.

The framework of the audio segmentation aims to have digital processors classify parts of audio signals similar to the way that human understand them. The automatic audio segmentation could be useful in various practical applications as follows:

- Audio thumbnails / Audio gisting: Music track review can be available at online music stores by representing a short excerpt of each music track which is somehow representative of the whole music track. If we use an analogy to image thumbnails, where easily convey the ”gist” of an image, these short excerpts can be called ”audio thumbnails” [1]. This could be done by extracting the segment which has a maximum similarity to the whole track. However, detection of exact boundaries of choruses is hard but this is much more better than a random segment extraction by a human being in terms of time saving.
Chapter 1. Introduction

- Audio summarization: Detected segments within a music track can be clustered. Then, only the most important novel segments will be included. The segments which are too similar to each other can be ignored without losing too much information. Automatic audio summarization enable quick overview of audio contents.

- Audio classification and retrieval: This procedure will work more effectively on shorter audio segments than long data [2]. This application would be useful for locating a known music or audio in a longer file. The audio segmentation will be implemented in longer files and the similarity between the detected segments and the target segments will be measured in order to find similar segments.

1.3 Contributions

In this thesis, a well-known audio segmentation method, the Foote method, has been investigated [2]. A real time segmentation algorithm which is based on this method is evolved. In this algorithm, different kinds of features extractions from audio signals can be used. The best set of the extracted features which works well for various combinations of audio signals such as combinations of different types of music, speech, and different broadcasting channels have been selected. Furthermore, a relative silence detection is introduced which decreases false detections of segment boundaries within a music track or speech. This method aims to locate intervals with loudness levels below an adaptive threshold value and labels these intervals as relatively silent in comparison with adjacent intervals. This algorithm restricts continuous applications of automatic loudness level control by introducing a threshold value for novelty of audio signals. This restriction improves the preservation of the dynamic structure of incoming audio signals.

1.4 Thesis organization

The remainder of this thesis is organized as follows.

- Chapter two: State of the art. In this chapter, the well-known Foote method, which is based on self-similarity between audio frames, is described for audio segmentation. Moreover, various methods of feature extraction and a loudness level measurement algorithm according to recommendation ITU-R BS.1770-2 is explained as well.

- Chapter three: Audio segmentation. In this chapter, some proposed manipulations in feature extraction and self-similarity matrix calculation are represented.
Moreover, the effect of them on novelty score measurements in the Foote method is examined.

- Chapter four: *Results*. In this chapter, the result of our audio segmentation evaluation is presented and the most powerful one has been selected from the best results. Moreover, the power of this best set of configuration in audio segmentation is demonstrated in an automatic loudness level control.

- Chapter five: *Conclusion*. In this chapter, the important conclusions are presented and some methods are stated which might be beneficial for improvement.
Chapter 2

State of the art

In this chapter, the Foote method that is one of the well-known audio segmentation algorithms is described at length. Afterwards, some useful audio segmentation methods introduced briefly. Furthermore, various methods of audio feature extractions are outlined. In the final section, a loudness level measurement algorithm is stated based on recommendation ITU-R BS.1770-2 summarily.

2.1 Foote method

This method tries to locate the points of significant changes in audio signals automatically. It can be done by analysing self-similarity within a audio/music track which can find segment boundaries in different types of audio signals such as verse/chorus detection in a music or speech/music transitions. Furthermore, this approach does not need training nor depend on specific acoustic cues. Instead, this method uses the signal to model itself. This feature has a wide range of benefits in different applications such as indexing, segmenting, and beat tracking of music [2].

The main idea of Foote method is based on frame-to-frame similarities which can be used for the automatic segmentation. The term frame or block corresponds to a sequence of limited number of audio samples. Using approaches like measuring spectral differences between frames, increases the risk of having errors due to false alarms as typical spectra for speech and music is in constant flux[2].

By considering the self-similarity of an audio signal, Foote method tries to find the points of maximum novelties in it. For each frame of the audio, the self-similarity for past and future intervals is computed. Then, a point in the audio signal calls a significant novel point when the past and the future intervals have high self-similarity and low cross-similarity. It should be noted that past and future intervals’ lengths indicate
the purpose of our segmentation. If we are interested in finding individual notes short
intervals can be used; while for finding longer events, such as musical themes, longer
intervals can be exploited. The result of this approach shows how novel the audio signal
is at any point. Note that in determining a novelty score of an instant, future frames
are not available at the same time. Thus, a delay occurs corresponding to this waiting
time.

2.1.1 Technical details

The Foote method produces time series values which correspond to acoustic novelty of
an audio signal at any time. Large audio changes occur at peaks and high values of this
time series values, which are called novelty scores in the Foote method. These novelty
scores can be used to find segment boundaries of an audio by assigning a threshold value.
Figure 2.1 shows a block diagram of computing the novelty score.

The first step in computing the novelty score is feature extraction. This can be im-
plemented by windowing the audio waveform as an initial phase. It should be noted
that any windows’ width and overlaps can be used in windowing procedure. Each
frame/block is then utilized for an audio feature extraction. Different methods of audio
feature extraction will be presented in section 2.3.

![Figure 2.1: Block diagram of segmentation process](image-url)
Distance matrix calculation

Once the audio features have been extracted, they can be used in a two dimensional representation \cite{3}. Figure 2.2 shows two dimensional representation of a similarity matrix. The measure D in Figure 2.2 shows how similar two feature vectors v_i and v_j are. These v_i and v_j correspond to audio frames i and j. Different distance measurements can be used to identify the distances between the frames. The simplest one could be the Euclidean distance which is the square root of the sum of squared differences of feature vector pairs:

$$D_E(i, j) \equiv \sqrt{\sum_p (v_i(p) - v_j(p))^2} \quad (2.1)$$

Another distance measure is the dot product of the feature vectors. This value will be large if the feature vectors are both large and oriented in similar direction. On the other hand, it will be small if the feature vectors are small or in different directions.

$$D_d(i, j) \equiv v_i \cdot v_j \quad (2.2)$$

The previous measurement, the scalar product of the feature vectors, is dependent on magnitude of the feature vectors. In order to remove this dependence, the product can be normalized by multiplication of the magnitudes of two feature vectors. This is equivalent to the cosine of the angle between the feature vectors.

$$D_C(i, j) \equiv \frac{v_i \cdot v_j}{\|v_i\| \|v_j\|} \quad (2.3)$$
The norm of each spectral vector is proportional to the average signal energy in that window according to Parseval’s relation\[2\]. Therefore, low energy windows, such as those containing silence, will be spectrally similar if we use the cosine measure.

Another distance measurement which can be used is Manhattan distance function. This function computes the distance that would be traveled to get from one data point to the other if a grid-like path is followed \[4\]. This is defined as the sum of the differences of their corresponding components for two items. If we have two vectors v_i and v_j and the dimension of each equals to N, then:

$$D_M(i,j) \equiv \sum_{n=1}^{N} |v_i(n) - v_j(n)|$$

In addition to the stated distance measures, any other reasonable distance measure can be used. The distance measure is a function of two frames which can be considered for the similarity between all frames of an audio signal. The distance measure can be presented in a two dimensional representation. A matrix which contains the similarity metric calculated for all frame combinations in an audio signal is called similarity matrix (S).

Maximum values in matrix S occur on main diagonal of this matrix since each frame is exactly similar to itself. Moreover, if the distance measure is symmetric, then S will be symmetric as well.

Figure 2.3 shows the similarity matrix of first ten seconds of a Glenn Gould performance of Bach’s Prelude No.1. This calculation has been done in MATLAB according to the Foote method. For this visualization, Mel-Frequency Cepstral Coefficients (MFCC) has been used. The frequency sampling rate of this audio is 44.1 kHz and it has been framed into 46.4 milliseconds with 50 percent overlapping. The values of similarity matrix are between -1 and 1 because the cosine metric distance measure is utilized. These values are scaled such that the maximum value represent maximum brightness. The visualization of similarity matrix helps us to understand the structure of an audio signal clearly. Areas of the audio which have high similarity appear as bright squares on diagonal part of the similarity matrix. Furthermore, repeated themes or choruses are visible as bright off-diagonal rectangles. As we can see in the similarity matrix, the audio structure between 0-2 seconds is similar to 2-4 seconds. The off-diagonal bright line is also admits this similarity within the Bach’s Prelude No.1.

Kernel correlation

The similarity matrix and its structure has a vital role in detection of the novelty points in an audio signal. As an example, consider a simple audio sample which contains two successive notes of different pitches. After the calculation of the similarity matrix, it can
be observed that its visualization will be like a two by two checkerboard with two white squares on the diagonal part corresponds to notes and two off-diagonal black squares corresponds to low similarity regions. If we use cosine metric distance measure D_C, white squares will be close to 1 while black squares will be close to -1. We are interested to find the instant when the notes change which can be done by indicating the center of the checkerboard. By correlating S with a kernel, which is similar to checkerboard, detection of change in the audio can be done. The simplest 2×2 kernel is:

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
Larger kernels can be constructed by the Kronecker product of a matrix of ones with the kernel matrix:

\[
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix} \otimes \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & -1 & 1 & 1 & 1
\end{bmatrix}
\]

To avoid edge effects, kernels can be smoothed using various kinds of windows that taper values of the matrix towards zero at the edges. A radically-symmetric Gaussian function has been used in this thesis. In the first step, a large kernel is created by the Kronecker product. Then, by using Gaussian equation as \(y = e^{-\frac{x^2}{\sigma^2}} \), a matrix as the same as the kernel matrix is created. By applying scalar production between these two matrices in MATLAB, the radially-symmetric Gaussian matrix is derived. Note that the value of \(\sigma \) should be half of the kernel size to have values almost zero at the edges.

A measure of novelty in audio signals can be derived by correlating a kernel \((C) \) with the similarity matrix \((S) \). The kernel \(C \) slides along the diagonal of \(S \) and the novelty measure is summing of the element by element product of \(C \) and \(S \). When \(C \) is over a uniform region, the negative and positive regions sum is close to zero. On the other hand when, \(C \) is located at the center of the instant where we have change in the audio signal, negative regions of kernel will multiply by negative regions of low cross-similarity.

![Figure 2.4: 90 x 90 kernel with Gaussian taper](image)
and the aggregate will be large. The result of this calculation will be a time-aligned measure of the novelty $N(i)$ in an audio signal. This correlation can be calculated as:

$$N(i) = \sum_{m=-W/2}^{W/2} \sum_{n=-W/2}^{W/2} C(m,n)S(i+m,i+n)$$

(2.5)

where W is the width of the kernel and the kernel is centered on $(0,0)$. For reducing computational complexity we can compute only one-half of the values in the equation of novelty score because usually S and C are symmetric, i.e. those for $m \geq n$.

The kernel is a square matrix with width of W. This width can directly influence properties of the novelty score. If we are interested to find short time changes in an audio signal, such as beats or notes, a small kernel will be helpful. On the other hand, increasing the kernel size affects time resolution. By decreasing the time resolution, the length of novel events that can be extracted by this method increases. Thus, larger kernels detect longer structures or events, such as musical transitions between music tracks or a change between verse and chorus within a music track. Figure 2.4 shows a checkerboard kernel with Gaussian taper of width 90. The width of the kernel for a defined time resolution can be derived as:

$$W = \frac{t}{F_t \times OLA_t}$$

(2.6)

where t is the length of kernel in time, F_t is the length of each frame in time, and OLA_t is the rate of overlapping between frames which is between 0 and 1. The resulted value should be rounded to the next even number.

Figure 2.5 shows two novelty scores using two kernel widths. These novelty scores are computed by a similarity matrix of the Gloud performance from Figure 2.3. For clarity in Figure 2.5, the novelty score which corresponds to $2S$ kernel is being offset upwards and the other plot’s offset is downwards. The two seconds kernel has peak boundaries of eight note phrases (one can count these eight notes by looking for small bright squares on the diagonal part of the similarity matrix). Each of these peaks occur at downbeat of the first note in each phrase (at 2, near 4, near 6, and near 8 seconds). In comparison with the short kernel (0.25 seconds), it can be seen that peaks are exactly at the onset of each note. Thus, there are eight peaks within each phrase which can be observed in the Figure 2.5. Note that this approach does not depend on any a priori knowledge of musical phrases or pitch, but it is capable of finding significant instants in a music track.
2.2 Techniques for the automatic audio segmentation

Different methods and algorithms are available for the automatic audio segmentation. The Foote method has been explained in previous section. Some other useful method will be presented briefly here.

Dynamic Time Warping (DTW)

By exploiting the idea of self-similarity matrix in [5], DTW has been used to extract segment transitions and segment repetitions. This approach computes a cost matrix which is capable of deriving the alignment of two sequences. It can be done by considering that the alignment cost of two similar segments is significantly smaller than average cost in value.

Singular Value Decomposition (SVD)

This method is also developed by Foote in [6] and [7]. After the audio segmentation algorithm is done by Foote’s method, SVD is employed to cluster the detected segments. Factorization of the segment similarity matrix to find repeated or similar segments can
be done by applying the SVD to the full sample-indexed similarity matrix. More details can be found in [6].

Hidden Markov Models (HMM)

This method has been exploited by many researchers [8], [9], [10], and [11]. A Markov model’s states cannot be observed directly. They can only be estimated by the output products calls HMM. In this approach, audio feature vectors are extracted and parametrization is applied using Gaussian Mixture Models (GMM). The GMMs are one of the most statistically mature methods for clustering. These parameters can be used as the HMM’s output values. In the first step, the emission and the transition probability matrices are estimated. Then, state sequences with high probabilities are Viterbi decoded. Finally, the HMM states can be used as segment types.

2.3 Audio feature extraction

For many applications of audio processing such as audio classification and audio segmentation, audio feature extraction is one of the most important steps. An audio signal which is represented over time is not so informative. Moreover, according to the frequency sampling rate of an audio signal, even a short block in time could contain many samples (e.g. more than 100). Thus, a wise solution can be interpretation an audio frame into smaller frames which reflect the most important information of the original frame. This can be done by converting the signal over time into the frequency domain and extracting desirable information from that. In this section, some of the most common methods of audio feature extraction which have been used in this thesis are described.

2.3.1 Chroma features

One of the techniques introduced for extracting the harmonic contents of a music signal is chroma feature extraction. Chroma feature is a common representation of tonal information contained in audio signals.

In 1964, Shepard reported an important idea about the representation of the perceptual structure of pitch. In [12], he reported that two dimensions are necessary to represent the perceptual structure of pitch rather than one dimension. He described that the human auditory system’s perception of pitch can be represented as a helix and coined the terms *tone height* and *chroma* to characterize the vertical and angular dimensions, respectively. Figure 2.6 shows an illustration of this helix. It can be observed in this
representation that as the pitch of a musical note increases, as an example from C1 to C2, its locus moves along the helix which rotates chromatically through all the pitch classes before it returns to the initial pitch class (C) one cycle above the starting point [1]. The perceived pitch, \(p \), of a signal can be factored into values of chroma, \(c \), and tone height \(h \) as:

\[
p = 2^{h+c}
\]

This formula could be derived from Shepard’s results. Furthermore, uniqueness of this decomposition is very important and it achievable by putting \(c \in [0, 1) \) and \(h \in \mathbb{Z} \).

Logarithmic changes in the fundamental frequency associated with pitch happens when \(c \) changes in linear manner. The 12 pitches of the equal-tempered chromatic scale can be obtained by dividing the interval between 0 and 1 into 12 equal parts. The difference of Shepard’s representation lies on the fact that the distance between two pitches depends on both \(c \) and \(h \) rather than only on \(p \) alone.

This type of representation can be considered as true representation from a musical perspective. Music theorists exploit the terms *pitch class* and *octave number* as analogous to Shepards chroma and tone height. The pitch class and chroma can be distinguished from each other by discretization of the continuous range of chroma values into 12 distinct pitch classes.

In 1986, Patterson presented an innovative interpretation of Shepard’s work in [13]. He generalized Shepard’s results to frequency and substituted the Archimedian spiral for Shepard’s helix. His model transforms each temporal frame of the auditory image into an activity pattern along a spiral of temporal lags. The lag values which are along the same "spoke" of the spiral, are octave multiples of each other. This means that Patterson’s model for frequency is structurally equivalent to Shepard’s model for pitch. In the Patterson’s model the frequency \(f \) can be decomposed as

\[
f = 2^{h+c}
\]
where the restrictions for c and h are the same as Shepard’s model. In another way, chroma from a given frequency can be calculated as

$$c = \log_2 f - \lfloor \log_2 f \rfloor$$

(2.9)

where $\lfloor . \rfloor$ denotes the greatest integer function. Therefore, chroma is the fractional part of the base-2 logarithm of frequency. Some frequencies in this system share the same chroma class if and only if they are mapped into the same value of c. This is similar to the idea of pitch. Consequently, 220, 440 and 880 Hz all share the same chroma class as 110 Hz, but 330 Hz does not.

Chroma feature extraction can be done in different manners. But basically, they pursue a similar pattern, consisting of five processing steps which is shown in Figure 2.7. First, the audio is represented in digital domain by down-sampling. Then, the time to frequency transformation is exploited, usually by a classical DFT. Afterwards, a spectral post processing can be applied to facilitate the chroma feature extraction. This post processing can be done in different ways such as by separating tonal and nontonal signal components or interpolating the frequency resolution. In the next step, the transformation from frequency spectrum to chroma representation is performed which is the main part of the chroma feature extraction. This part is divided into two steps: semitone-mapping and octave-mapping. The frequency bins are added according to their corresponding semitones in the semitone-mapping and the semitones in octave distance are added up to pitch class in the octave-mapping. The result is the 12 dimensions which can be improved by chroma post processing, for example by normalizing them or by smoothing them over time[14].

In this thesis, to extract chroma features from an audio signal the Short Time Fourier Transform (STFT) has been used. The STFT frequency bins are converted to chroma. During this conversion, optional reference frequency, A440, is selected. Then, extra dimensions have been removed and only twelve desired dimensions are preserved. An advantage of using chroma vector is that it can identify cords of the song. The feature can be similar for the chords since it captures the overall harmony. The plot of chroma vectors versus time is called chromogram. Figure 2.8 presents a chromogram visualization of the first ten seconds of Gloud performance. The chroma feature vectors in each pitch class are converted to have the mean equal to zero and variance equal to one.

2.3.2 Mel-Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients (MFCC) are the most well-known features which have been used for speech recognition. They have been used by many researchers to
Figure 2.7: The process of chroma feature extraction [14]

Figure 2.8: Chromagram visualization of the first ten seconds of Gloud performance
model music and audio signals. Foote in [15] represented a retrieval system which is built based on cepstral representation of audio signals. Logan and Chu in [16], presented a music summarization system based on cepstral features. Also, Blum in [17], listed MFCCs as one of the features in his retrieval system.

MFCCs features are successful for speech recognition due to their ability to represent the speech amplitude spectrum in a compact form [18]. In the process of creating MFCCs features, perceptual and computational considerations have been noted. Figure 2.9 shows the steps in the process of creating MFCC feature. In the first step, the input signal is divided into frames, usually followed by applying a windowing function. The purpose of dividing the input signal into short blocks (typically less than 50ms) is to have blocks that are statistically stationary. Then, for each frame a cepstral feature vector can be generated.

The next step is to take the DFT of each frame. Afterwards, only the logarithm of the amplitude spectrum is kept. Phase information is discarded because perceptual studies have shown that the amplitude of the spectrum is much more important than phase [18]. Moreover, the perceived loudness of a signal has been found to be approximately logarithmic. Therefore, the logarithmic of the amplitude has been taken.

The next step is to emphasize perceptually meaningful frequencies. This can be achieved by collecting the spectral components into 40 frequency bands. These bins are not spaced in frequency domain equally, because it has been found that lower frequencies are perceptually more important than higher frequencies. Thus, the bin spacing follows 'Mel' frequency scale. To simulate the frequency resolution of human auditory system,
which has high resolution in low-frequency and low resolution in high frequency of the spectrum of any sound, we can use the mel frequency scale. This transformation can be done by:

\[
mel(f) = 2595 \log(1 + \frac{f}{700Hz})
\]

(2.10)

Figure 2.10 shows a plot of the mel scale which presented in previous equation. The Mel scale is based on a mapping between actual frequencies and perceived pitches. The mapping is approximately linear below 1kHz and logarithmic above this frequency because the human auditory system does not perceive pitch in a linear manner.

![Mel frequency scale](image)

Figure 2.10: The mel frequency scale [18]

The Mel-spectral vectors which are calculated for each frame, have correlated components. To reduce the number of parameters, the last step of MFCC feature extraction is to apply a transform to these vectors to decorrelate their components. To achieve this reduction, basically the Karhunen-Loeve (KL) transform or equivalently Principal Component Analysis (PCA) can be utilized. The KL transform can be approximated by Discrete Cosine transform (DCT) [19]. Using DCT, 13 cepstral features are obtained for each frame.

In this thesis, the MFCCs features are extracted using the method that explained beforehand. Moreover, the first component from the 13 cepstral features is excluded and twelve dimensions have been used.
Figure 2.11 shows a visualization of MFCC feature vectors for the first ten seconds of Gloud performance.

![Figure 2.11: MFCC feature vectors visualization of the first ten seconds of Gloud performance](image)

2.3.3 Spectral features

In this subsection, several audio features are reviewed and their extraction methods are explained. These features can be classified into spectral features which could be computed from the STFT and are computed for all frames of an audio signal.

Spectral flux

Spectral flux is a measure which describes the amount of local spectral change. This spectral feature can be derived as the squared difference between the normalized magnitudes of successive spectral distributions:

\[F = \sum_{n=1}^{N} (N_t[n] - N_{t-1}[n])^2 \]

(2.11)

where \(N_t[n] \) and \(N_{t-1}[n] \) are normalized magnitude of the STFT at the current time frame \(t \) and the previous time frame \(t - 1 \). Note that it could either be calculated for whole frequency band as single result or can be calculated for selected frequency bands.
individually. In this thesis, three bands have been selected. Therefore, the result for each frame is a dimensional vector.

Spectral Centroid

Spectral centroid is a measure which is defined as center of gravity of the magnitude spectrum of the STFT:

\[
F = \frac{\sum_{n=1}^{N} n|M_t[n]|^2}{\sum_{n=1}^{N} |M_t[n]|^2}
\]

(2.12)

where \(M_t[n]\) is the magnitude of the STFT at frame \(t\) and frequency bin \(n\). The centroid is a measure of spectral shape. This spectral feature could also be represented in three dimensions.

Spectral spread

Spectral spread is a measure of bandwidth of a spectrum and can be derived as:

\[
F = \frac{\sum_{n=1}^{N} (n - F_{sc})^2|M_t[n]|}{\sum_{n=1}^{N} |M_t[n]|}
\]

(2.13)

where \(F_{sc}\) is feature extracted from spectral centroid. In this thesis, three sub-bands have been used for calculation of this measure.

Spectral flatness

Spectral flatness is also called the tonality coefficient. It shows how much a sound frame is similar to a tone or similar to a noise. Here, the tone can be defined as the amount of peaks or resonant structure in a power spectrum. On the other hand, the noise corresponds to flat spectrum of a white noise. A high value of spectral flatness shows that the spectrum has a similar amount of power in all spectral bands i.e. this frame could be considered as noise. The spectral flatness is calculated by dividing the geometric mean of the power spectrum by the arithmetic mean of the power spectrum:

\[
F = \frac{\sqrt[3]{\prod_{n=1}^{N} M_t[n]}}{\sum_{n=1}^{N} M_t[n]}
\]

(2.14)

This measurement can be represented in different sub-bands instead of the whole band.
2.3.4 Combination of spectral features

In this thesis, four three-dimension spectral features are combined to form a twelve-dimension feature. Figure 2.12 shows the Feature vector visualization of Gloud performance for its ten first seconds, using combined spectral features. Note that these vectors are normalized to have the mean equal to zero and variance equal to one. As a summary for the last two sections, Figure 2.13 indicates the novelty score which is calculated by a kernel with two seconds width, using three different feature vector. These novelty scores are normalized to be equal to one at their maximum. It can be seen that for this ten seconds audio signal, combined spectral features and MFCC have had a better performance than chroma features. Figure 2.13 shows that MFCCs work better than other features because MFFCs detects all four segments correctly.

2.4 Loudness level measurement (Recommendation ITU-R BS.1770-2)

In this thesis, the loudness level measures is based on Recommendation ITU-R BS.1770-2. The ITU-R Recommendations constitute a set of international technical standards developed by Radiocomunication Sector (formerly CCIR) of the ITU.
Figure 2.13: Novelty score calculation by using three different feature vectors

The Recommendation ITU-R BS.1770-2 specifies audio measurement methods to determine subjective program loudness level. This recommendation considers:

- that modern digital sound transmission techniques are available in a widely dynamic range;
- that modern digital sound transmission and production techniques are available as a mixture of mono, stereo, and multichannel formats;
- that listeners desire subjective loudness level of audio programs to be uniform for different program types and sources;
- that, for the purpose of loudness level control, in order to reduce audience annoyance, having a single recommended algorithm for objective estimation of subjective loudness level is essential.

Therefore, this recommendation offers a multichannel loudness level measurement modeling algorithm. The algorithm consists of four steps:

- 'K' frequency weighting
- mean square calculation for each channel
- channel-weighted summation
- gating
Figure 2.14 shows the steps and various components of this algorithm for five main input channels (left, center, right, left surround, and right surround). In this thesis, stereo audio signals are being considered. So only two of these inputs are being used and gating has not been utilized.

The first step of the algorithm applies K-weighting filter which is composed of two filtering stages. The first stage is shelving filter that accounts for the acoustic effects of the head, and the second stage is a high-pass filter.

Mean square of the output (filtered input signal) of this two-stage filter is measured as:

\[s = \frac{1}{n} \sum_{1}^{n} y_{L}^2 + y_{R}^2 \]

(2.15)

where \(y_{L} \) and \(y_{R} \) are filtered left and right input signals and \(n \) is the number of samples in each frame.

Then, the loudness level over the measurement frame is defined as:

\[\text{Loudness level (LUFS), } L_{K} = -0.691 + 10 \log_{10} s \]

(2.16)

where \(L_{K} \) is a symbol to show the loudness level, and letter \(K \) indicates K weighting filter is used.
Chapter 3

Audio segmentation

In this chapter, different characteristics of the Foote method have been studied. Various parameters which could affect the Foote method’s performance have been considered. Moreover, some modifications have been proposed in order to improve the results of the Foote method. In each section, the reason behind proposed method and proposed parameter variation in addition to the expected results are stated. Then, the obtained results are presented and they are compared with the expected results.

In this thesis, three main types of items and their combination with each other have been utilized. These three types of items are speeches, musics, and recorded audio from broadcast radio channels. The combined items have 12s length and consist of two 6s length parts. These 6s parts have been selected from the three mentioned main types of items. Table 3.1 shows these different combination of items and the abbreviation of that have been used in this thesis.

We are interested to find the segment boundary correctly and also want to reduce the number of false segment boundaries which are detected in the audio segmentation procedure.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music-Music</td>
<td>MM</td>
</tr>
<tr>
<td>Speech-Speech</td>
<td>SS</td>
</tr>
<tr>
<td>Broadcast-Broadcast</td>
<td>BB</td>
</tr>
<tr>
<td>Music-Speech</td>
<td>MS</td>
</tr>
<tr>
<td>Music-Broadcast</td>
<td>MB</td>
</tr>
<tr>
<td>Speech-Music</td>
<td>SM</td>
</tr>
<tr>
<td>Speech-Broadcast</td>
<td>SB</td>
</tr>
<tr>
<td>Broadcast-Music</td>
<td>BM</td>
</tr>
<tr>
<td>Broadcast-Speech</td>
<td>BS</td>
</tr>
</tbody>
</table>

Table 3.1: Different kinds of audio combinations
3.1 Parameter settings in the Foote method

In this section, the impact of four different parameters on the Foote method are presented. The kernel time is one of these parameters. According to the Foote method, one could expect larger kernel times tend to detect longer novel events while the smaller kernel time detects novelty on a short time scale. Secondly, the size of each frame have an effect on the time resolution. It can be anticipated that the smaller frames have more time resolution and increase the accuracy of short novel events. On the other hand, the larger frames tend to ignore changes in short intervals and perform better in detection of long novel events.

Distance measure could be considered as a third parameter in the Foote method studies. One could expect that cosine metric distance which does not depend on the vectors magnitude may have a better performance. Finally, the kind of feature vectors that use in the Foote method have a great impact on the final segmentation results. The MFCCs could work better on items containing speech parts while chroma vectors could have a better performance on items containing music parts.

3.1.1 Kernel time

For calculation of a novelty at an instant in an audio signal, the Foote method needs to use the information equal to half of the kernel time before the instant and after the instant. Thus, in order to measure the novelty of an instant in an audio signal, we would have a delay which is equal to the half of the kernel time in an ideal situation (if we ignore the computation time).

Figure 3.1 shows the calculation of the novelty scores by three different kernel times for a music-music (MM) combination of audio signals. It can be seen that when we have longer kernel times, the small changes in the audio signal would not be considered as novel points. In this example, the kernel times 1s and 2s detect the segment boundary better than small 250 milliseconds. Moreover, in the case that the Kernel Time (KT) equals to 2s, we do not have any other distinguished peaks in the novelty score which decreases the risk of detecting false segment boundaries significantly. We should consider that the larger kernel time increases the computational complexity when the correlation calculation is performed. Note that these novelty score values are normalized by their maximum value and for this calculation MFCCs vectors have been utilized. In the real time processing, we should consider the delay which is inherent in the Foote method and according to our application, the desirable KT can be selected.
Figure 3.1: Novelty score calculation by using three different kernel times

3.1.2 Frame size

Figure 3.2 shows novelty scores values for three different frame sizes. The item under test is the combination of speech-speech (SS) audio signals with 44.1 kHz as frequency sampling rate. It can be seen that for smaller frame size the segment boundary detection has been performed better. In this calculation, the combined spectral features have been exploited and KT equals to 1 second. According to the frequency sampling rate (44.1 kHz), 1024, 2048, and 4096 samples correspond to approximately 23, 46, and 92 milliseconds respectively.

We should consider that the smaller frame size increases the computational complexity and the execution time. Thus, it is not applicable to have a frame size shorter than 25 milliseconds for real time processing.

As an another example, Figure 3.3 shows novelty score computation results of three different frame sizes for an MM item. It can be observed that larger frames have better performance in detecting in suppressing unwanted peaks. If we compare this figure with Figure 3.1 the similarity between longer kernel times and larger frame sizes could be inferred.
Chapter 3. Audio segmentation and real-time loudness level compensation

Figure 3.2: Novelty score calculation by using three different frame sizes for an SS item

Figure 3.3: Novelty score calculation by using three different frame sizes for an MM item
3.1.3 Distance measure

Figure 3.4 shows three calculated novelty scores for an MM(music-music combination) audio signal. It can be observed that the novelty values for the case Manhattan distance measure are relatively large. This occurs because the range of distance measures using Manhattan distance measure are larger than Euclidean and cosine metric distance measure and these larger values result in larger novelty scores. Moreover, it can be seen for this item the cosine metric distance measure performed better because the real segment boundary’s novelty score for this case is relatively larger than the second important peak.

One way to normalize these distance measures is to transform them to the range of between 0 and 1. The cosine metric which is originally between -1 and 1 can be transformed as:

$$D_{C_{new}} = e^{D_{C} - 1}$$

(3.1)
Chapter 3. Audio segmentation and real time loudness level compensation

where D_C can be calculated from equation 2.3. For Euclidean and Manhattan distance measures which are always larger than 0, the transformation is like this:

$$D_{\text{new}} \equiv e^{-D}$$

where D can be Euclidean or Manhattan distance measure which can be calculated from equations 2.1 and 2.4. Figure 3.5 shows novelty scores calculation results for a BB (broadcast-broadcast combination) in which have used three different normalized distance measures. It can be seen the novelty values are approximately in the same level.

![Figure 3.5: Novelty score calculation by using three different normalized distance measure](image)

3.1.4 Feature vectors

The type of extracted feature vectors from an audio signal has a great impact on the result of audio segmentation. As an example, it has been shown that MFCC feature vectors are capable to process speech signals well while chroma feature vectors have the ability to analysis the music signals in a better way. Thus, the desirable feature vectors...
can be extracted based on the purpose of audio processing. In this subsection, the impact of the different extracted feature vectors on the novelty score has been studied.

Figure 3.6: Novelty score calculation by using three different feature vectors for an MM item

Figure 3.6 shows the results of novelty score calculations for an MM item utilizing three different feature vectors. It can be seen that the combined spectral feature vectors and MFCC feature vectors detect segment boundary better than chroma feature vectors while the latter shows its potential to detect changes within a music track as can be seen in first half of the MM item.

As an another example, Figure 3.7 shows novelty scores for a BB item in which MFCC feature vectors again demonstrate their ability to detect the changes in audio signal. In the two last figures, the cosine metric distance measure, kernel time equal to 1 second, and 2048 as a frame size have been used for calculation of novelty score. Also, the first half of the BB item contains a speech signal which has some silent intervals between speech parts and these silent intervals introduce high peaks in the novelty score which can be considered as a significant change or new segment boundary. In the next section some methods is presented to improve the results.
3.1.5 Summary

In the previous subsections, important parameters and elements which are able to influence the result of audio segmentation using the Foote method have been described and their impact on the results have been studied. There are some significant problems available for the real-time audio segmentation which should be improved to obtain a robust result. One of the main problems is finding a threshold value for detecting the segment boundaries. It is not possible to have all novelty scores and then normalize them by its maximum value in the real-time processing. Moreover, different feature vectors, different distance measures, and different frame sizes change the novelty scores significantly. Thus, it is not easy to define a way to normalizing the novelty scores nor to find a fixed threshold which can work for all different parameter settings.

The other observed problem is associated with feature vectors. The results from different feature vectors did not satisfy our expectations. As an example, the performance of chroma feature vectors for the MM item was not satisfying (Figure 3.6). Thus, small amount of manipulations and feature extraction post processing could be helpful.

Another crucial problem occurs within a speech audio signal. Numerous silent or noise
Chapter 3. Audio segmentation and real time loudness level compensation

intervals occurs during a speech signal and these combination of silent intervals and speech intervals introduce high peaks in the novelty score. Thus, the false detection increases and the real segment boundary detection gets hard.

Finally, it can be mentioned that our expectations about the impacts of kernel time, frame size, and distance measure correspond to the obtained result. Note that it is not a wise manner to look into the obtained results item by item. Therefore, an evaluation which could measures the performance of segmentation for large set of data is needed. This evaluation is presented in chapter four.

3.2 Proposed methods to improve the Foote method

In the last part of previous section, it has been stated some problems of the segmentation procedure in the Foote method. In this section some ideas proposed to solve these problems. One idea could be smoothing the STFT that is used in extracting feature vectors. This smoothing could make the adjacent frames similar to each other that may reduce unwanted high peaks within an audio track. The second modification could be an application of model-based normalization technique on each dimension of feature vectors. Mean and variance are two statistical properties that can be considered in this normalization.

Furthermore, in this section two ideas are presented to reduce the unwanted segment boundaries detection within a music or speech track. The first one is based on detection of abrupt decrease of loudness level within an audio track and set the novelty score corresponding to this instant as minimum. These instants are potential to be detected as segment boundaries. The second one, could be normalizing the distance between frames by their loudness levels. This modification may help considering the distance of silent or noise frames as zero or near to zero. Thus, the distance of silent intervals to any frames would be considered as minimum, i.e. these frames could be ignored during the segmentation procedure.

3.2.1 Feature vectors manipulation

Smoothing the Short Time Fourier Transforms (STFT)

We use the STFTs to compute the feature vector of a frame. These STFTs can be smoothed before using them for extracting the feature vectors. It can be done by applying a leaky integrator. To do this, a first order IIR digital filter is used. It can be implemented as:

\[y(n) = bx(n) + (1 - b)y(n - 1) \]

(3.3)
where $y(n-1)$ is the previous feature vector and b is the leaky coefficient.

Figure 3.8 shows the effect of this smoothing on the Power Spectral Density (PSD) of the MM item that has been used in Figure 3.6. The smoothing can be observed easily from this figure. Also, it should be noted that the second half of this item is a music from the percussion genre. In the original spectrogram, we can observe that in the second half the higher frequencies in a period-like manner appear and the disappear. This structure introduces high peaks in novelty scores that can be detected as segment boundaries mistakenly. These peaks can be observed in the Figure 3.6 in the case of combined spectral features.

In Figure 3.9, the effect of smoothing on the result of novelty score is clear. If we compare this figure by Figure 3.6, it can be observed that the segment boundary detection has been improved for all kinds of feature extraction ways and non-segment boundary peaks have been suppressed in the second half of the item.

Note that it could be an idea to smoothing the extracted feature vectors in order to get a better result. Our experiments showed that the smoothing of the feature vectors decreases the accuracy of this method.

Feature vector post processing

Normalizing the feature vectors’ dimensions in a way that they have zero mean and variance equal to one, could also help the process of audio segmentation. To implement
Figure 3.9: Impact of smoothing spectrogram on novelty score

This normalization, mean and standard deviation of each features’ dimensions must be calculated then:

$$f_i = y_i - M_i$$ \hspace{1cm} (3.4)

$$g_i = \frac{y_i}{std_i}$$ \hspace{1cm} (3.5)

where M_i is the mean of dimension i of features and std_i is the standard deviation of dimension i of f_i. These two steps result in feature vectors that have a mean equal to zero and a variance equal to one in every dimensions.

Figure 3.10 shows that this operation has a good effect on chroma features and combined spectral features. But, it decreases the quality of MFCC feature vectors.

Note that this normalization cannot be performed in real time processing because the whole feature vectors are not available beforehand. It can be done by considering large amount of audio signals and taking those mean and variance for normalizing streaming audio inputs. Then, the approximate normalization can be performed by utilizing these calculated mean and variance.

Figure 3.11 shows the result of combination of normalization of feature vectors with smoothing the STFTs on the novelty score. It improves the result of the chroma feature vectors and combined spectral features significantly but as it declared before the
Figure 3.10: Impact of normalization of feature vectors on novelty score

Figure 3.11: Impact of feature vectors manipulation on novelty score
normalization does not have good effect on MFCC feature vectors. The same result occurred for other different types of items. Thus, in the following sections in this chapter the novelty scores are calculated using chroma vectors and combined spectral features which are normalized and the STFTs are smoothed before features extraction. But, when MFCC feature vectors are used only the STFTs are filtered before extraction of the feature vectors.

3.2.2 Relative silent detection

We may encounter many silent intervals during a single speaker speech signal or during a conversation between two or more people. In these cases the loudness level decreases abruptly and increases to the previous level again. These abrupt changes in the audio signal could introduce unwanted high peaks in the novelty score which increases the number of false segment boundaries detection. Thus, we are interested to find a simple way which could help us to detect these silent intervals and remove the corresponding high peaks from novelty score. Note that the procedure of silent detection is not a simple task and it is beyond of the scope of this thesis. In the next subsections we introduce some simple ways to overcome this problem.

Fixed threshold for loudness level

In addition to feature vector extraction, the loudness level of the each frame of an audio signal can be computed. Then, a fixed threshold can be defined to simply decide that if a frame is silent or not. Then, the novelty scores computation performs based on this decision. If a frame detected as a non-silent frame, the novelty score will be computed normally. In the case of silent frame, a zero value will be assigned to the novelty score of this instant.

Figure 3.12 shows an SS item which its first half contains a speech signal without any noise and the second half is a noisy speech signal. We set a fixed threshold on a loudness level equal to $-40LUFS$. As it can be seen if we compare the result of novelty score calculation with and without this threshold value (the top-right and bottom-right panel in Figure 3.12), we can observe that two peaks are suppressed when we used the fixed threshold value for loudness level. In this case, the chroma feature vectors, a kernel time equal to 1s, and the frames’ lengths equal to 46.4 milliseconds have been utilized. Another point that can be seen is that in the both cases when the length of silent interval is considerable, after this relatively long silent section we would have a high peak. As can be seen this peak dominates the desired peak which corresponds to a segment boundary.
Adaptive threshold for loudness level

In the previous subsection, we presented a simple way that could remove some false boundary detections. One way to improve the previous manner is that to have an adaptive threshold for loudness level based on average of the loudness level over a limited period of time. Thus, if the loudness level of a frame is less than the average of previous loudness levels (say 1 second) then this frame will be considered as silent frame and its corresponding novelty score will be considered as 0.

Furthermore, the decided silent frames would not contribute in the computation of novelty score. It means that when a frame considered as a silent frame the algorithm will ignore this frame and assumes that no new frame arrives at this instant. As an example, if we encounter twenty subsequent silent frames, the algorithm would go into an standby mode and wait for a non-silent frame to update the self-similarity matrix and to compute a new novelty score.

Figure 3.13, shows how the adaptive threshold for loudness level works. In the bottom-left panel, the loudness level and threshold values are presented. The frames which their loudness levels are below threshold value will be considered as silent frames. In the bottom-right of the Figure 3.13, zero novelty scores corresponds to the intervals whose
loudness levels below the threshold curve. As can be seen, this modification has better result than the fixed threshold for loudness level. In the latter case, local maximum point in the novelty score which corresponds to real segment boundary at 6th second is dominated by a high peak value. But, when adaptive threshold for loudness level is used the boundary is distinguishable. Note that in the second half of this item, some unwanted peaks are increased in value.

This method would be also useful within the music items. Figure 3.14 shows the ability of this method to suppress the unwanted peaks in the novelty score. Note that a delay in the detection of segment boundary occurred when the adaptive threshold for loudness level has been utilized. Consider a situation that right after the segment boundary, the loudness level of incoming frames are less than the threshold value. Thus these frames will be considered as silent frames and the algorithm will stay at standby mode. It waits for new non-silent frames to start computing the novelty score again. The amount of this delay depend on length of the silent frames at the beginning of an new item.
In this thesis, we tried to normalize the elements of the self similarity matrix in order to help us finding the relative silent intervals or frames. To do this, the loudness level of each frame is calculated. After calculation of the distance between two frames, the distance will be multiplied by:

\[DN = 1 - \frac{|N_1 - N_2|}{\max(|N_1|, |N_2|)} \]

(3.6)

where \(N_1 \) and \(N_2 \) are the loudness levels of frame 1 and frame 2 respectively and \(DN \) is a coefficient that should be multiplied by the distance measure. Therefore, if the loudness of two frames are close to each other the \(DN \) will be close to one. When the loudness levels of two frames have significant difference then the \(DN \) will be a small value between zero and one. Product of distance measure and \(DN \) would result in ignorance of the distance between two frames which have large difference in their loudness levels. Thus, when we have a silent or noise frame, its distance to any other frames would be small which means that this silent frame is considered to be similar to the other frames.

Figure 3.14: Impact of adaptive threshold silent detection on the novelty score of an MM item
Figure 3.15 shows effect of distance normalization on the novelty score of an SS item.

Unfortunately, this method does not have a good impact on the result of the Foote method.

3.2.3 Summary

In the previous subsections, four proposed ideas have been studied. The first and the second ones aimed at improving the feature vectors in order to obtain more meaningful result from the Foote method. The obtained results showed that smoothing of the STFTs cause appropriate effect on the novelty scores. This modification reduce the unwanted peaks in the novelty score within an audio track. Furthermore, normalization of feature vectors improves the results for all feature vectors except MFCCs. The other proposed method aimed at detecting relative silent frames by comparing their loudness levels with a threshold value. As it could be expected, this detection helped us to locate potential instants with high novelty score and suppress them because they occur within an audio track. This method improves the Foote method’s result appropriately.
Finally, the idea of normalizing the distance between frames by their loudness level’s differences has been proposed. The obtained results showed that this modification change the result of novelty score slightly and does not improve it.
Chapter 4

Evaluation setup and results

4.1 Evaluation setup

The concatenated items that have been used in this chapter are selected according to table 3.1 in chapter 3. These items are uncompressed audio files in PCM format, mono channel, and with 44100Hz frequency sampling rate. Our experiments show that results of mono channel audio files and stereo files are almost the same. Thus, one channel of these items are used for reducing the processing time.

4.1.1 Block diagram

Figure 4.1 shows steps of the process of evaluation. First, it can be divided into two processing parts: the process of the train set and the process of test set. The train set items are selected from the same type as the test data but different items. The same feature vectors will be extracted for these processes. Once features are available, the novelty score of train set data can be calculated. Then, the average of maxima that occur around the segment boundaries (half of a second before and after segment boundary) will be computed. It can be used different ideas to set a threshold value for test procedures. One way could be taking the average of these maxima and the other way may be select a value which at least give us 50 percent success in detecting the segment boundary points if the train set would be under the test. In this evaluation, the later method has been exploited and the obtained threshold value has been used to mark maximum points in the test procedure as segment boundaries or not. In the last step, if one consider N as a number of segment boundaries, FN as the number of false negatives (number of missed segment boundaries in the test procedure), and FP the number of false positive (number of predicted non-segment boundary points), it can be
written:

\[TP = N - FN \] \hspace{1cm} (4.1)

\[Sensitivity(S) = \frac{TP}{N} \] \hspace{1cm} (4.2)

\[Precision(P) = \frac{TP}{TP + FP} \] \hspace{1cm} (4.3)

\[F - Score(F) = \frac{2 \times S \times P}{S + P} \] \hspace{1cm} (4.4)

where \(TP \) is true positive (number of segment boundaries that are detected correctly). Therefore, a sensitivity value close to one show the ability of the process to detect segment boundaries correctly. In a similar way, a precision value close to one shows that almost all the detected points are occurred at segment boundaries.

\[\text{Figure 4.1: Block diagram of evaluation setup} \]

\[\text{\textbf{4.2 Results}}\]

In the following parts, each parameter is studied under test in order to find a set of parameter settings which give the best result. In these sections, four type of extracted
feature vectors have been used and shown by their abbreviations. CF stands for combination of chroma vectors with spectral feature vectors, ChF stands for chroma vectors, $MFCC$ stands for MFCCs feature vectors, and SF stands for spectral feature vectors.

Frame size

Figure 4.2 shows that two smaller frame sizes have better performance that frame size equal to 4096 samples. It can be observed that for some types of items and feature vectors 1024 samples performs better and for others 2048 samples. Thus, It can be inferred that the results for these two frame sizes are relatively same. In this case, 2048 samples has a privilege over 1024 samples because it reduces the computational complexity and the processing time which are vital points in real time processing.

![Figure 4.2: Effect of the frame size on different types of items in the evaluation](image)

Kernel size/time and feature vectors

In Figure 4.3, the items under test process were included different types of items and they are labeled by their abbreviation according to table 3.1. As an example, MS stands for Music-Speech combination and SB stands for Speech-Broadcast. The difference between two columns is only the difference in kernel time. As can be seen, the sensitivity in the case of $KT = 1s$ is better than $KT = 2s$ and the precision is worse. This occurs because when we increase the kernel time, this algorithm tries to find significant changes and the
maximums points with high novelty score decrease. Thus, detection of changes between two items in the same genre of musics or two speech items is getting hard.

In Figure 4.4 the train set items and the test set items are both from the BM type. Note that the precision increase in the case of $KT = 2s$ specially when we use spectral features or combination of spectral features with chroma vectors. Our experiments show that when sensitivity is more important, $KT = 1s$ is a better choice than $KT = 2s$. One important point that can be extracted form these two results is the performance of feature vectors. MFFCs performance are the best when we have speech signals in our test data set. Although MFFCs’ precision is not as well as their sensitivity, their F-score result are quite good and shows MFCCs ability in detecting segment boundaries. When we have music items, the spectral features and their combination with chroma features perform better than MFCCs.

Finally in Figure 4.5, it can be seen that F-score results are slightly got better when STFT smoothing applied. The sensitivity also gets better while precision seems to be degraded. Thus, because it affected sensitivity in a good way and increased the F-score it can be inferred that it could help the procedure of real time audio segmentation.

Proposed algorithm for relative silent detection

In the results of this part, $KT = 1s$ has been utilized and tried to test proposed method in chapter 3. Figure 4.6 compares the original Foote method with the relative silence method using adaptive threshold. It can be observed that results of all feature vectors set
Figure 4.4: Effect of kernel time on the BM items in the evaluation

Figure 4.5: Effect of STFT smoothing in the evaluation
except MFCCs get better when we used relative silence detection. It can be inferred from this result that this method improves the sensitivity and also as we expected increases the precision by removing maxima due to the silent intervals. Furthermore, when we compare the F-scores, we can observe that for BB, SS, BS, and SB exploiting MFCCs without applying relative silence removal give better result while for other types spectral features and its combination with chroma vectors have better result when we apply the relative silence removal method.

![Figure 4.6: Effect of the relative silence detection on different types of items in the evaluation](image)

Threshold value for novelty score

The obtained threshold that is derived from processing of the train set depends on the novelty scores of the segment boundaries of these items. Thus, this threshold value could be changed by using another train set. In Figure 4.7, two sets of data are used. First, data set A is selected as the test set while data set B is selected as the train set. In the second time, the train set and the data set have been exchanged. It can be inferred that the obtained threshold value from the data sets B is too large that result in low sensitivity. As a comparison, it can be seen that the obtained threshold from data set A has a smaller value than the previous obtained one. Therefore, in second column the sensitivity increased because the threshold value has a more appropriate value than the obtained threshold in the first column.
It could be an idea to normalize the novelty scores and select a fixed threshold value.

![Figure 4.7: Effect of the data set and the train set on each other](image)

It can be done by dividing the novelty score by summation of absolute values of all elements of kernel matrix that restricts novelty score between 0 and 0.4. It could be considered with high probability that when the novelty score is below 0.1, we are still within a track. Figure 4.8 shows that selecting larger threshold for the novelty score increases the precision and decreases the sensitivity. Note that this result shows that the novelty scores calculated by MFCCs feature vectors are smaller than the others. Thus, even small thresholds like 0.07 for them decrease the sensitivity abruptly.

Summary

Thus, it can be concluded that for unknown data which usually happen during listening to TV/Radio broadcasting channels, spectral features combined with chroma vectors could give us the best result. The kernel time equal to 1s and the frame size equal to 2048 samples (46ms) could be the other appropriate parameters. Furthermore, the proposed relative silence detection utilizing adaptive threshold have a good impact on the results. Note that these results are valid for real time processing. In the off line processing, detecting the segment boundaries is easier than real time processing because the novelty score can be normalized by its maximum value and a threshold value (say 0.6) could be set to find significant changes.
4.2.1 Loudness level control

In this subsection, the application of the novelty score in the loudness level control is presented. Based on the best parameter settings that we obtained from previous sections, the analysis of input audio signal in real time processing has been performed.
Figure 4.9 shows the loudness level adjustment of an input audio signal. This audio signal is a concatenated of four items with various loudness levels. In this thesis, an available loudness level control has been used. This method according to recommendation BS.1770-2 measures the loudness level. Then, based on a loudness level target value tries to apply corresponding gain to the input signal. This method saves 40 previous applied gains and based on that smooths new calculated gain to control risk of abrupt gain increase or decrease.

By utilizing information of the novelty scores, the loudness level of an streaming audio could be controlled. First, the novelty scores will be divided by summation of absolute values of the kernel matrix. Our experiments show that this division restricts maximum novelty score to be less than 0.4. Furthermore, significant changes occurs when this value is above 0.1. Thus, the loudness level control method is modified in a way that if the novelty score is less than 0.07, the new applied gain will be equal to previous one. For the novelty scores above the 0.07, the rate of smoothing decreases by increasing the novelty scores. The second panel in the Figure 4.9 shows the faster loudness level modification by utilizing novelty scores. Moreover, this modification improves the dynamic structure preservation because for many instants keeps the applied gain constant.
Chapter 5

Conclusion

This thesis could be separated into two parts. In the first part, it has been studied the Foote method which is a robust algorithm for the automatic audio segmentation. Then, it has been tried to improve this method and to use it in real time audio processing. The feature vectors that have been utilized in the Foote method have great impact on the final results. Thus, the most suitable feature vectors, which can be used in audio segmentation, for different types of audio signals are introduced. Our experiment data set consisted from combination of speech, music, and radio broadcast audio signals. In the second part, the application of real time audio segmentation in automatic loudness level control has been studied. It showed that real time change detection in an audio signal could increase pace of loudness level modification. Also, it improves the dynamic structure preservation of an input audio signal by keeping the applied gain constant while no novelty occurs in the input signal.

Therefore, our main contributions can be summarized as follows:

- Feature vectors selection for audio segmentation for different types of audio signals. If speech signal is available MFFCs feature vectors and if music tracks are available chroma vectors and spectral features would have the best results. For unknown audio types, the later features have a better performance.

- Introducing a parameter setting that has the best result in real time audio segmentation when we exploit the Foote method ($KT = 1s$, $framesize = 46ms$, applying STFT smoothing, and feature vector normalization)

- Proposing an algorithm which helps to increase the precision of the Foote method in real time processing.

- Utilizing previous results to improve the automatic loudness level control. This result in better dynamic structure preserving and faster loudness level adjustment.
As a future work, one could improve the accuracy of the audio segmentation by combination of these set of configuration in a probability estimation model. This could improve detecting of content changes in an audio signal and could improve removal unwanted detected changes within the audio signal. This could result in more accurate and approximately online automatic loudness level control with almost full preservation of dynamic structure of an input audio signal.
References

[4] www.improvedoutcomes.com/docs/WebSiteDocs/Clustering/Clustering_Parameters/Manhattan_Distance_Metric.htm.

