Diversity of *Staphylococcus aureus* enterotoxin types within single samples of raw milk and raw milk products

S. Loncarevic¹, H.J. Jørgensen¹, A. Løvseth¹, T. Mathisen¹ and L.M. Rørvik¹,²

¹Section for Feed and Food Microbiology, National Veterinary Institute, and ²Department of Food Safety and Infection Biology, The Norwegian School of Veterinary Science, Oslo, Norway

2004/0428: received 16 April 2004, revised 12 August 2004 and accepted 13 August 2004

**ABSTRACT**

S. LONCAREVIC, H.J. JØRGENSEN, A. LØVSETH, T. MATHISEN AND L.M. RØRVIK. 2004. Aim: To find out if testing of up to 10 *Staphylococcus aureus* isolates from each sample from raw milk and raw milk products for staphylococcal enterotoxin (SE) might increase the chances of identifying potential sources of food intoxication.

Methods and Results: Altogether 386 *S. aureus* isolates were tested for the presence of SE by reversed passive latex agglutination (SET-RPLA), and SE genes (se) by a multiplex polymerase chain reaction (PCR). In 18 of 34 (53%) *S. aureus* positive samples a mixture of SE and/or se positive and negative isolates were identified. Multiplex PCR increased the number of potential SE producing strains, i.e. isolates that harboured se, with 51% among the product and 48% among the raw bovine milk isolates. Examination by pulsed-field gel electrophoresis mostly confirmed clonal similarity among isolates sharing SE/se profile, but did not further differentiate between them.

Conclusions: Isolates of *S. aureus* collected from one sample may show great diversity in SE production and different plating media seem to suppress or favour different strains of *S. aureus*.

Significance and Impact of the Study: Several isolates of *S. aureus* from each sample should be tested for enterotoxin production in cases with typical SE intoxication symptoms with methods that are able to reveal new SE/se.

**Keywords:** multiplex PCR, pulsed-field gel electrophoresis, *Staphylococcus aureus* eneterotoxin, staphylococcal enterotoxin genes, reversed passive latex agglutination.

**INTRODUCTION**

*Staphylococcus aureus* food poisoning is an intoxication caused by ingestion of food containing staphylococcal enterotoxin (SE). It is characterized by an acute onset of nausea, vomiting, abdominal cramps and diarrhoea, and is one of the most common food-borne diseases in the world.

So far, 20 serologically distinct SEs have been identified. SEA, SEB, SEC, SED, SEE (Jones and Khan 1986; Betley and Mekalanos 1988; Couch et al. 1988; Bayles and Iandolo 1989) represent classical types, while SEG, SEH, SEI and SEJ are newly described enterotoxins (Ren et al. 1994; Su and Wong 1995; Munson et al. 1998; Zhang et al. 1998).

SEC has been described with minor antigenic variations and designated SEC₁, SEC₂ and SEC₃ (Bergdoll et al. 1965; Avena and Bergdoll 1967; Reiser et al. 1984). Recent studies (Jarraud et al. 2001; Orwin et al. 2001; Letertre et al. 2003; Omoe et al. 2003) have described other SE genes (se); sek, sel, sem, sen, seo, sep, seq, ser and seu) which point to the possible existence of new SE. Not all staphylococci are SE producers, or the amount of produced SE may be insufficient for food intoxication.

The detection of *S. aureus* and SE in food is often difficult. Food processing may kill the bacteria without destroying the thermostable SE. Methods currently used for
direct detection of SE in food are enzyme-linked immuno-
sorbent assays. These methods have limitations such as time
consumption, cost and a detection limit of SE higher than
the level required for staphylococcal intoxication. For
presence of SE in bacterial culture, reversed passive latex
agglutination (SET-RPLA) has been the method of choice.
The detection limit of this method is $<1\text{ ng SE ml}^{-1}$ and it
is possible to detect and differentiate the five classical SE
(SEA, SEB, SEC and SED) from bacterial isolates.

Sequencing of the genes encoding all the identified SE has
given the opportunity for detection and differentiation of all
$se$ by the polymerase chain reaction (PCR) technique. The
continuous identification of new SE, and the requirement
for faster methods in the investigation of food poisoning,
have led to the development of methods for simultaneous
detection of all $se$, such as the multiplex PCR technique
(Monday and Bohach 1999).

Recently there has been an increase in production and
consumption of raw milk products in Norway and conse-
sequently increased attention to such products as a potential
source of $S.\ aureus$ food poisoning. An outbreak of $S.\ aureus$
intoxication caused by raw milk cheese has been described
(Kvellestad et al. 1988), and such products have also caused
sporadic cases in Norway (S. Loncarevic, unpublished data).
In many suspected staphylococcal food poisoning cases,
however, the source for the illness has not been identified,
and the number of cases is probably underestimated.

In cases of staphylococcal food poisoning or epidemi-
ological investigations of food, it is common to only test one
isolate of $S.\ aureus$ for toxin production. For other bacterial
species however, it has been shown that molecular typing
and characterization of several isolates from the same food
sample, obtained from different plating media, is necessary
in order to associate a certain food item with food poisoning
(Loncarevic et al. 1996, 1997).

The aim of this study was (i) to find out if testing of up to
10 colonies from each food sample might increase the
identification of raw milk and raw milk products as potential
sources for staphylococcal intoxication; (ii) to compare
results from detection of SE (A-D) by SET-RPLA with the
presence of the corresponding $se$ shown by multiplex PCR;
(iii) to explore clonal similarity between isolates with various
$SE/se$ profiles, by comparison of all isolates from one sample
by use of restriction enzyme analysis (REA) with pulsed-
field gel electrophoresis (PFGE).

MATERIALS AND METHODS

Isolates of $S.\ aureus$ from raw milk and raw milk products

$Staphylococcus\ aureus$ were collected from 26 samples of raw
milk products and 18 samples of bovine and caprine bulk
milk. The raw milk products were provided by 19 different
producers and included fresh, soft, semi-hard and hard
cheese from bovine (10), caprine (14) and reindeer (2) milk.
Soft cheese included six imported cheese. The milk samples
were taken from normal bulk milk at delivery to local dairies.
To our knowledge, none of the samples had been involved in
food poisoning.

The milk and milk products were analysed for the presence
of $S.\ aureus$. Ten grams of each milk product were added to
90 g of sterile peptone water and stomached for 30–90 s.
Three 10-fold dilutions were made and 0.1 ml of each step
was inoculated on bovine blood agar (Oxoid, Basingstoke,
Hampshire, UK) with washed erythrocytes (BA) and Baird
Parker with Rabbit Plasma Fibrinogen supplement (BP + RPF)
(bioMérieux, Marcy-l’Étoile, France). The plates were incubated for 48 h at 37°C. Typical colonies
were counted after 24 and 48 h. Typical colonies from both
plates were investigated further. Up to five typical and three
atypical presumptive $S.\ aureus$ colonies from both blood
plates and BP-RPF were further investigated. Gram-positive
cocci that were catalase and coagulase positive and that
exhibited growth on P-agar with 7 mg l$^{-1}$ acriflavin
(Roberson et al. 1992) were considered $S.\ aureus$.

In total 386 $S.\ aureus$ isolates from the raw milk products
(209 isolates) and raw bovine (100) and caprine (77) milk
were freeze-stored at $-70°C$ in heart infusion broth with
15% glycerol before further investigation.

SE production test by SET-RPLA

Up to 10 isolates from each sample were tested for
enterotoxin production (SEA to SED) by SET-RPLA assay
(Oxoid). The isolates were grown aerobically on blood agar
plates for 18–24 h, followed by inoculation into tryptic soya
broth (Difco, Detroit, MI, USA) and incubation at 37°C for
18–24 h. Testing with SET-RPLA was there after per-
formed according to the manufacturer’s instructions.

$se$ identification by multiplex PCR

Targeting $se$ identification and characterization of the same
isolates as tested with SET-RPLA were performed according
to the method of Monday and Bohach (1999), with some
modifications recommended by Løvseth et al. (2004). After
the DNA isolation from overnight growth bacterial culture,
amplification of selected $se$ was obtained by use of 10 primer
sets divided into two reaction mixtures ($sed, sef, ses, sei$ and
$sea, sfb-sec, sec, seh, sej$). DNA was amplified in a MJ Research
thermocycler (MJ Research, Waltham, MA, USA) followed
by determination of PCR product by electrophoresis and
visualization on a UV-transilluminator (Syngene; Syoptics
Ltd, Cambridge, UK). Product sizes were estimated using a
pUC-mix molecular weight ladder (Fermentas, Vilnius,
Lithuania). 16S rRNA was used as a control for DNA isolation and presence of bacterial DNA in the PCR reaction.

**REA with PFGE**

Isolates tested by SET-RPLA and multiplex PCR from 20 samples were examined for clonal similarity by REA-PFGE. DNA from in situ lysed bacterial cells in chilled agarose-plugs was prepared according to the PulseNet protocol (McDougal et al. 2003). One colony of each *S. aureus* strain was incubated aerobically in brain heart infusion broth (BHI) at 37°C for 18–24 h. The cells were harvested by centrifugation in a fixed angle rotor at 15,000 g for 3–4 min and after aspiration of the supernatant, the pellet was resuspended in TE-buffer (10 mM Tris, 1 mM EDTA, pH 8.0). After incubation at 37°C in water bath for ≥10 min, 1 mg ml⁻¹ Lysostaphin (Sigma-Aldrich) was added to the cell suspension and dispensed into slotformers. Solidified agarose plugs were incubated in a lysis buffer at 37°C for at least 4 h followed by rinsing of plugs with TE buffer for at least four times. Restriction enzyme digestion was carried out using 200 µl of digestion buffer containing 30 units of *Sma*I (Boehringer-Mannheim) enzyme. After enzyme incubation at 30°C for at least 3 h, the plugs were placed in 1% SeaKem Gold agarose (BioWhittaker, Molecular Applications, Rockland, ME, USA) and electrophoresed in a CHEF DR-III-System (Bio-Rad, Richmond, CA, USA). An 19 h migration period at 200 V with a pulse time of 5 s/40 s was used. After running, the gel was treated with ethidium bromide solution (final concentration 1 µg ml⁻¹) for 20 min and destained for 45 min in fresh distilled water. The patterns were visualized with shortwave u.v. light and documented (Syngene; Syoptics Ltd).

**RESULTS**

Staphylococcal enterotoxin production and presence of *se* in 386 isolates of *S. aureus* obtained from 18 samples of raw milk and 26 samples of raw milk products are shown in Table 1. SE or *se* were detected in isolates from 10 and 24 *S. aureus* positive samples, respectively, while no SE or *se* were detected from the remaining eight and two samples respectively. The diversity in SE production and presence of *se* among the isolates is shown in Tables 2 and 3.

Twenty-one of the 34 (61.7%) samples of raw milk and raw milk products producing SE and/or harbouring *se* contained a mixture of *S. aureus* isolates that were positive and negative for SE and/or *se*. The remaining 23 samples contained isolates that either were all negative for SE or *se* (10) or all positive (13).

The greatest diversity of SE types was shown in a sample of imported raw milk soft cheese sample no. 400 (Table 3; Fig. 1).

<table>
<thead>
<tr>
<th>Origin</th>
<th>No. of samples</th>
<th>No. of isolates</th>
<th>SET-RPLA (no. of SE)</th>
<th>PCR (no. of <em>se</em>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprine milk</td>
<td>8</td>
<td>77</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>Bovine milk</td>
<td>10</td>
<td>100</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Raw milk products</td>
<td>26</td>
<td>209</td>
<td>13</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>386</td>
<td>21</td>
<td>133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin</th>
<th>Samples</th>
<th>BP-RPF BA</th>
<th>SEC</th>
<th>SEC</th>
<th>BP-RPF BA</th>
<th>SEC</th>
<th>SEC</th>
<th>sec</th>
<th>seg</th>
<th>sei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprine milk</td>
<td>2394</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2396</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2399</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sg213</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sg214</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sg215</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bovine milk</td>
<td>2204</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SK254</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SK262</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SK265</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3 SE production and se (SE genes) in S. aureus isolates obtained from raw milk cheese on BP-RPF and BA detected by use of SET-RPLA and multiplex PCR

<table>
<thead>
<tr>
<th>Cheese sample nos</th>
<th>SET-RPLA (no. of positive isolates)</th>
<th>PCR (no. of positive isolates)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP-RPF</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>SEC SED</td>
<td>SEC</td>
</tr>
<tr>
<td>29-1</td>
<td>5 5</td>
<td>5 5</td>
</tr>
<tr>
<td>29-2</td>
<td>5 4</td>
<td>5 5</td>
</tr>
<tr>
<td>29-3</td>
<td>5 5</td>
<td>5 4</td>
</tr>
<tr>
<td>294</td>
<td>5 5</td>
<td>5 5</td>
</tr>
<tr>
<td>29-5</td>
<td>5 5</td>
<td>5 5</td>
</tr>
<tr>
<td>400</td>
<td>5 5 1</td>
<td>1 4 4 1 2 2</td>
</tr>
<tr>
<td>882-1</td>
<td>5 5</td>
<td>1 1</td>
</tr>
<tr>
<td>927-10</td>
<td>5 5 3 3</td>
<td>3 3 3</td>
</tr>
<tr>
<td>29</td>
<td>3 5 2 4</td>
<td>2 4 4</td>
</tr>
<tr>
<td>35</td>
<td>5 5</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>3 2</td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>5 1</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>5 5</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>5 5 5 4</td>
<td>5 5 4</td>
</tr>
<tr>
<td>66</td>
<td>1 3 1 2</td>
<td>1 2 2</td>
</tr>
<tr>
<td>68</td>
<td>0 2</td>
<td>2</td>
</tr>
<tr>
<td>69</td>
<td>5 3 5 2</td>
<td>5 2 2</td>
</tr>
<tr>
<td>71</td>
<td>3 5 2 5</td>
<td>5 2 5</td>
</tr>
<tr>
<td>74</td>
<td>2 5</td>
<td>2 2</td>
</tr>
<tr>
<td>75</td>
<td>5 5</td>
<td>3 3 2</td>
</tr>
<tr>
<td>79</td>
<td>1 5 1 5</td>
<td>5 1 5</td>
</tr>
<tr>
<td>80</td>
<td>4 0 4 4</td>
<td>4 4 4</td>
</tr>
<tr>
<td>82</td>
<td>0 6 6 6</td>
<td>6 6 6</td>
</tr>
<tr>
<td>83</td>
<td>4 10 4 8</td>
<td>8 4 8</td>
</tr>
</tbody>
</table>

Fig. 1 se genes in S. aureus isolates (lines 3–24) from cheese sample no. 400 obtained by multiplex PCR. Lane M marker; lane 1, FRI913 (positive control) sec; lane 2, RS010 (positive control) sei, sed, seg; lane 4, isolate nr.319, seg; lane 6, isolate no. 321, seg; lane 8, isolate no. 323, sei, seg; lane 9, isolate no. 324, sei, seg; lane 10, isolate no. 325, sed; lane 11, isolate no. 326, sei, seg; lane 12, isolate no. 327, sei, seg; lane 13, FRI913 (positive control) seh/c, sea, sec; lane 14, RS010 (positive control) seh; lane 15, isolate no. 318, seh; lane 16, isolate no. 319, seh; lane 22, isolate no. 325, seh. Lane 5, isolate no. 320, lane 7, isolate no. 322, no sec, sed, seg or sei were detected. Lanes 17–21, 23 and 24, isolates nos 320–324, 326 and 327, no sea, seh, sec or sei were detected. 16S rDNA, positive control for presence of bacterial DNA in the PCR reaction.

The multiplex PCR technique increased the number of potentially SE positive isolates, i.e. isolates harbouring se with 51% among the products and 48% among the raw bovine milk isolates. All except four isolates that harboured classical se also produced the corresponding SE. There was no difference observed between detection of SE and se in isolates from raw caprine milk isolates.

Isolates from 10 raw milk product samples were positive for one or more of the newly described se (seg-sej) without producing classical SEs or harbouring their genes. Among the 122 isolates harbouring new se, seg and sei were predominant (39.3 and 46.7%). Seg and sei in combination were found in 34.4% of these isolates.

Tables 2 and 3 show various abilities among isolates of S. aureus from the same sample to produce SEs or harbour se, related to the method used (SET-RPLA and multiplex PCR), and the agar (BA and BP-RPF) from they were recovered. All these SE positive isolates produced only one ‘classical’ toxin type, SEC, identified by SET-RPLA and confirmed by multiplex PCR technique (Table 3). Difference between the total number of SE-producing and se-harbouring isolates from all raw milk and raw milk products from BA and BP-RPF, was not observed. However, isolates with seg and sei in combination were found more often among the isolates obtained from BP-RPF (33) than from BA (10).

By examination of clonal similarity among isolates from 20 samples by REA-PFGE, 14 DNA restriction pattern groups were observed. From single sample, distinguishable patterns were usually identified in isolates containing and not containing SE and/or se. However, one of five isolates that contained SEC/sec obtained from BP-RPF from a raw caprine milk sample (no. 2396) showed a different DNA restriction pattern from the other four isolates. S. aureus isolates that produced SEC and contained sec, obtained from different samples of raw caprine milk (nos 213, 214, 215) and cheeses from raw caprine milk (nos 79, 82 and 83) showed identical DNA restriction patterns. The greatest diversity in DNA restriction patterns was shown among isolates from cheese sample no. 400. Characterization of these 10 isolates by REA-PFGE (Fig. 2) showed that two isolates harbouring seg/seb and sei had identical DNA restriction pattern (clone §). Four other sei and seg positive isolates, from the same cheese, also displayed identical pattern (clone £). The other isolates were different clones of S. aureus.

Fig. 2 PFGE profiles of S. aureus isolates obtained from cheese sample no. 400. Lane M, Lambda Ladder PFG Marker (BioLabs). Isolates no. 319 producing seg and seb (lane 2) and 321 producing seg (lane 4) had identical DNA restriction patterns (clone §). Isolates nos 323, 324, 326 and 327 producing sei and seg (lanes 6, 7, 9 and 10) displayed identical DNA restriction patterns (clone £).
DISCUSSION

Examination of SE production and the presence of se in S. aureus isolated from 44 samples of raw milk and raw milk products revealed considerable diversity in the S. aureus population both among and within single samples. Altogether 53% of the samples contained a mixture of SE and/or se positive and negative isolates. Testing of up to 10 colonies instead of only one from each food sample increased the chance of identifying a potential source of staphylococcal intoxication. In cases where the concentration of an enterotoxin-producing strain of S. aureus has been high enough to cause intoxication, the S. aureus population in the food item may be less diverse. Examination of only one ‘wrong’ isolate of S. aureus from a suspected food item can, however, lead to missing the source of intoxication. Determination of SE-production and presence of se in several colonies of S. aureus from the incriminated food is therefore recommended.

Considerable variation in SE production and presence of se was observed among the isolates from raw bovine milk and raw milk products. The multiplex PCR technique doubled the number of potentially enterotoxin-producing isolates from these samples compared with SET-RPLA. No difference was observed between SE and se positive isolates by the two methods among isolates from raw caprine milk, probably because all SE positive isolates produced only one classical toxin type, SEC.

In all isolates where production of classical SE was identified by SET-RPLA, the presence of se was confirmed by the multiplex PCR technique. In contrast, toxin production indicated by seb and sec in four isolates was not verified with SET-RPLA. This finding may be explained by lower sensitivity of the SET-RPLA, or by the fact that detection of se does not necessarily indicate production and biological activity of the toxin.

As SET-RPLA, which is the most common laboratory method for detection of SEs from bacterial strains, is designed to detect only classical SE (SEA-SED), underestimation of potentially SE producing isolates may be expected. Availability of DNA sequence information of all described se and development of PCR methods has, however, given the opportunity to overcome these problems. In a UK study the incidence of potentially SE-positive isolates increased from 54 to 79% when this technique was used (McLauchlin et al. 2000). Rosec and Gigaud (2002) observed that the percentage of enterotoxigenic S. aureus dramatically increased from 30 to 60% among the foodborne strains when new se were included in the investigation. As a number of sporadic cases and foodborne outbreaks of staphylococcal intoxication is unsolved, the possibility of S. aureus producing new SE in food should be taken in consideration. Other SE than A-D are not yet well characterized, but some of them (SEG, SEH, SEI and SEJ) produce emetic reaction in monkeys (Genigeorgis 1989; Bergdoll 1990; Ren et al. 1994) and SEH has already been involved in a food-poisoning case (Pereira et al. 1996).

Isolates from the samples of raw milk products harboured newly described se without producing classical SE types more often (13/24 samples) than isolates from raw milk (one of four samples). McLauchlin et al. (2000) detected se fragments from newly described se in 26% of 129 se positive isolates without revealing SEA-SED either by PCR or SET-RPLA.

A notable finding was that 27-9% of 215 PCR-positive isolates in our investigation harboured seg and sei genes, while 51 and 11-8% strains harboured seg and sei alone respectively. Rosec and Gigaud (2002) reported that 80-6% of 155 PCR-positive isolates harboured seg and sei. McLauchlin et al. (2000) observed that over 45 of 129 (35%) isolates harboured seg and/or sei, while seg alone was associated with 16% of incidents. Systematic association of seg and sei genes also observed in this and other studies suggests that they are reservoir or part of a reservoir for enterotoxin gene rearrangement in S. aureus (Rosec and Gigaud 2002), as has been hypothesized for the region where sei was identified and sequenced (Munson et al. 1998).

We know from previous studies that one food sample may yield different serovars and clones of the same bacterial species, depending on the method used (Loncarevic et al. 1996). In the present study, one selective (BP-RPF) and one nonselective medium (BA) were employed. The number of S. aureus isolates potentially producing classical types of SEs was much higher from BA both with SET-RPLA and PCR (42 and 46 respectively) than from BP-RPF (28 and 28). In contrast, the selective medium revealed a higher number of isolates harbouring new se (96) than BA (26). The indication that certain strains of a bacterial species may be suppressed or favoured by different media is in agreement with the statement of Lewis and Corry (1992) and Loncarevic et al. (1996). To prevent that a causative S. aureus is missed, it is important to examine colonies from different media in a case of staphylococcal intoxication.

In the present study, 10 samples contained S. aureus isolates with two to six different SE/se profiles and up to six different REA-PFGE patterns. In one raw milk product sample (no. 400) the 10 isolates showed six different se profiles (seb, sed, sei, seg, sej and combinations), while only one isolate produced SE (SED). Except for two isolates harbouring seg/seb and seg showing identical DNA restriction pattern, isolates with the same toxin profile shared identical PFGE patterns, and those with different toxin profiles also yielded different patterns. It was not surprising that a cheese sample showed the highest diversity of S. aureus as the potential sources of bacterial contamination.
of raw milk cheese are multiple; raw milk possibly from several farms, the processing environment and personnel.

In conclusion, several isolates of \textit{S. aureus} should be tested for enterotoxin production in cases where typical symptoms of SE intoxication are observed. Different plating media seem to suppress or favour different strains of \textit{S. aureus}. Methods with ability to reveal new \textit{se} (G-J), such as multiplex PCR, should be used in solving food poisoning cases. REA-PFGE mostly confirmed clonal similarity among isolates sharing SE/se profile and did not further differentiate between them.

\textbf{ACKNOWLEDGEMENTS}

This work was supported financially by the Nordic Council of Ministers and the Norwegian Research Council (Grant no. 141197/130) to whom we express our gratitude.

\textbf{REFERENCES}


